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[iii] PREFACE

 

The present analysis of the origin and evolution of the solar system represents a 
fusion of two initially independent approaches to the problem. One of us (Alfvén) 
started from a study of the physical processes (1942, 1943a, 1946; summarized in a 
monograph in 1954), and the other (Arrhenius) from experimental studies of plasma-
solid reactions and from chemical and mineralogical analyses of meteorites and lunar 
and terrestrial samples. Joined by the common belief that the complicated events 
leading to the present structure of the solar system can be understood only by an 
integrated chemical-physical approach, we have established a collaboration at the 
University of California, San Diego (UCSD), in La Jolla, during the last seven years. Our 
work, together with that of many colleagues in La Jolla, Stockholm, and elsewhere, has 
resulted in a series of papers describing the general principles of our joint approach, 
experimental results, and model approximations for some of the most important 
processes.

The present volume is a summary of our results, which we have tried to present in 
such a form as to make the physics understandable to chemists and the chemistry 
understandable to physicists. Our primary concern has been to establish general 
constraints on applicable models. Hence we have avoided complex mathematical 
treatment in cases where approximations are sufficient to clarify the general character 
of the processes.

The work was made possible by grants from the Planetology Program Office and the 
Lunar and Planetary Program Division, Office of Space Science, National Aeronautics 
and Space Administration Headquarters. Their longstanding help and encouragement 
particularly that of Steven E. Dwornik and Robert P. Bryson have been of crucial 
importance, and we are grateful also to Maurice Dubin for support. Our thanks are also 
extended to Homer E. Newell, John Pomeroy, Ernst Stuhlinger, and Dan M. Herman for 
their continuing active interest in this undertaking. In view of NASA's association 
through the years with the preparation of this [iv] study, we are particularly gratified 
to have it published (at the initiative of Steven E. Dwornik) as a NASA Special 
Publication.
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The molding of the material into an organized and critically edited form is due to the 
dedicated and competent effort of Dawn S. Rawls. We also owe much gratitude to a 
number of our colleagues who have contributed in many ways to this work, particularly 
Bibhas R. De, Wing-Huen Ip, and Asoka Mendis at UCSD in La Jolla, and Nicolai 
Herlofson, Bo Lehnert, Carl-Gunne Fälthammar, Lars Danielsson, and Lennart Lindberg 
at the Royal Institute of Technology in Stockholm. Continual encouragement and 
advice from Professors Henry G. Booker, James R. Arnold, and William B. Thompson at 
UCSD have also been of importance in our work. 
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SP-345 Evolution of the Solar System 

 

[531] SYMBOLS

 

The symbol index is arranged alphabetically, giving English and then Greek symbols. 
Astrological symbols appear immediately following the English alphabet. The final 
portion of the index consists of the most commonly used subscripts. The section and 
equation numbers appearing in the central column refer to the first use of that symbol. 
Where one symbol has several distinct usages, each meaning is given with a section 
reference. For subscripted symbols that do not appear in the main body of the symbol 
index, the meaning may be determined by looking up the symbol and subscript in the 
separate portions of the index.

A Sec. 8.3 Apocenter 
A Sec. 6.4 Eq. (6.4.13) Variable of substitution 

a Sec. 2.1 Length of semimajor axis 

Sec. 6.4 Point label 
Sec. 7.2 Variable of substitution 

B Sec. 5.3 Magnetic field 

BTp Sec. 19.2 
The transplanetary magnetic field (the magnetic field 
strength in the region of space outside Pluto) 

B Sec. 6.4 Eq. (6.4.14) Variable of substitution 

b Sec. 4.3 Point label 
Sec. 7.2 Variable of substitution 

C 
Sec. 2.1 Eqs. (2.1.1)-
(2.1.3) 

Orbital angular momentum per unit mass 

CM Sec. 2.1 Orbital angular momentum 

Sec. 13.1, Eq. (13.1.1) Spin angular momentum 

c Sec. 5.3 Velocity of light 

Sec. 6.4 Point label 
Sec. 7.2 Variable of substitution 
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D Sec. 6.7, Eq. (6.7.4) Net transport of guiding centers 

d Sec. 8.3 Point label 
Sec. 21.8 Distance between electrodes 

E Sec. 4.3, Eqs. (4.3.4)-
(4 3 5) 

Proper eccentricity 

Sec. 5.3 Electric field 

Sec. 9.3 East 

Eion 
Sec. 21.4.3, Eq. 
(21.4.4) 

The value of the electric field at which discharge and 
ionization of gas become possible 

E|| Sec. 15.3 Electric field parallel to the magnetic field 

e Sec. 2.1 Eccentricity 

Sec. 5.5 2.718 (the base of the natural logarithms) 

Sec. 15.3 Charge on the electron 

F Sec. 17.2, Eq. (17.2.4) 
Sum of the gravitational, centrifugal, and 
electromagnetic forces per unit mass 

f Sec. 3.2 Force per unit mass 

fap Sec. 6.4, Eq. (6.4.3) 
Force per unit mass due to apparent attraction to the 
guiding center of motion 

fB Sec. 17.2 Electromagnetic force per unit mass 

fc Sec. 3.2, Eq. (3.2.2) Centrifugal force per unit mass 

fG Sec. 3.2 Force per unit mass due to gravitation 

fper Sec. 6.4, Eq. (6.4.4) 
Force per unit mass due to a gravitational 
perturbation 

fq Sec. 5.3 Electromagnetic force per unit mass 

ft Sec. 18.3, Eq. (18.3.2) Tidal force per unit mass 

 Sec. 5.5 
Force per unit mass due to impinging energy flux; 
radiation pressure 

G Sec. 2.1 Universal gravitational constant 

g Sec. 4.3 Absolute visual magnitude 

Sec. 8.2 Acceleration due to Earth's gravitationa field 

h Sec. 2.2 Height above a specified surface 

Sec. 9.2 Height of tides on a celestial body 
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I Sec. 4.3, Eqs. (4.3.6)-
(4.3.7) 

Proper inclination 

Sec. 15.4 Electric current 

i Sec. 2.1 Orbital inclination to the ecliptic plane 

ieq Sec. 2.2 Inclination of equator to the orbital plan. 

 
Sec. 13.6 Inclination of spin axis to the orbital plane 

K Sec. 11.2, Eq. (11.2.3) Constant, in cm/g 

Sec. 23.2 Constant, in units of mass 

Kr Sec. 3.3, Eq. (3.3.9) Constant, in radians 

Kz Sec. 3.3, Eq. (3.3.17) Constant, in radians 

k Sec. 6.8 Boltzmann's constant 

L Sec. 1.4, Eq. (15.1.1) Critical hydromagnetic parameter 
Sec. 8.5 Lagrangian points one and two 

Sec. 16.3 Electrostatic double layer 
Fig. 16.3.1 

Sec. 26.3 Eq. (26.3.2) Latent heat of fusion 

L4, L5 Sec. 20.5 Lagrangian points four and five 

l 
Sec. 8.2 

Length of a simple pendulum or the radial distance of 
a secondary body describing circular motion about a 
primary body. 

Sec. 15.1 Length (linear extent of medium) 

M Sec. 4.1 Mass of a macroscopic body 

MB Sec. 16.4 
Total mass of plasma suspended by the magnetic 
field at any one given time 

MH2O Sec. 26.4, Eq. (26.4.2) Mass of water released by impacting planetesimals 

Mj Sec. 12.5 Mass of a jet stream 

m Sec. 5.4 Mass of a small particle or grain 

ma Sec. 11.2 Mass of an atom 

me Sec. 21.9 Mass of the electron 

mH Sec. 11.2 Mass of the hydrogen atom 

mper Sec. 6.4, Eq. (6.4.4) 
Small mass introducing a perturbative gravitational 
force 
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N Sec. 4.3 Number function 

Sec. 9.3 North 

N Sec. 6.7 Number density 

n Sec. 2.2 Index of numeration 

Sec. 3.3 Eq. (3.3.15) The integers 

O Sec. 4.3 The center or origin of motion 

P Sec. 8.3 Pericenter 
PB Sec. 15.1 Magnetic permeability 

P0 Sec. 4.3, Eq. (4.3-6) Forced oscillation 

p Sec. 4.3 Albedo 

p0 Sec. 4.3, Eq. (4.3.4) Forced oscillation 

Q Sec. 9.2 
An inverse function of the angle which a tidal bulge 
makes with respect to the tide-producing body 

Sec. 16.3 
Charge passing through a circuit during a given 
interval of time 

Q0 Sec. 4.3, Eq. (4.3.7) Forced oscillation 

q Sec. 2.5 
Ratio of the orbital distances of the innermost and 
outermost orbiting bodies in one group of secondary 
bodies 

Sec. 5.3 Electric charge 

qn Sec. 2.2 
Ratio of the orbital distances of adjacent secondary 
bodies 

q0 Sec. 4.3, Eq. (4.3.5) Forced oscillation 

R Sec. 2.2 Radius of a solid body 

RG Sec. 12.3, Eq. (12.3.4) 
Radius of growing embryo at transition point between 
nongravitational accretion and gravitational accretion 

 Sec. 2.2 Radius of gyration; inertial radius 

r Sec. 2.4 Orbital radius 

Sec. 3.2 Radial direction 

rB Sec. 23.2, Eq. (23.2.2) 
Distance from the central body to a point on a 
magnetic field line from the dipole magnetic field of 
that body 
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rion Sec. 21.4, Eq. (21.4.1) 
Ionization distance (radial distance at which infalling 
matter can become ionized) 

rL Sec. 11.2, Eq. (11.2.4) 
Distance from a secondary body to its interior or 
exterior Lagrangian points one and two 

rmin Sec. 23.9, Eq. (23.9.6) 
Minimum value of orbital radius of condensed matter 
which is in orbit around the primary body 

rMR Sec. 18.3 

The Modified Roche Limit (the radial distance at which 
matter orbiting a primary body cammot accrete to 
form a secondary body due to the tidal force of the 
primary) 

rorb Sec. 2.1 
Radial distance from primary body to orbiting 
secondary body 

rper Sec. 6.4, Eq. (6.4.4) 
Radial distance of the perturbing mass mper from the 
guiding center of motion of another mass. 

rR Sec. 18.3 
The Roche limit (the radial distance at which the tidal 
force of the primary exceeds the self-gravitational 
force of the secondary) 

rrel Sec. 21.13.3 
Orbital distance at which ionization can take place for 
matter falling through a corotating plasma 

rs 
Sec. 17.2, Eq. 
(17.2.13) 

Radius of the surface which is the demarcation for 
plasma falling in toward the central body or falling 
into the equatorial plane 

rsyn Sec. 23.9 
Orbital radius of a synchronous satellite; i.e., a 
satellite revolving with orbital velocity equal to the 
rotational velocity of its primary 

rTp Sec. 19.2, Eq. (19.2.2) 

The maximum radial distance at which angular 
momentum transfer from the Sun has ever occurred; 
furthest extension of the transplanetary magnetic 
field. 

S Sec. 6.4, Eq. (6.4.3) 
Displacement from the guiding center of motion of 
the particle executing that motion 

Sec. 9.3 South 

s Sec. 16.3 Arc length 

T Sec. 2.1 Sidereal period of revolution 

Te Sec. 5.5, Eq. (5.5.10) 
e-folding time (the time in which the value of a given 
parameter changes by a factor of e (2.718)) 

Tgy Sec. 5.4 Period of gyration 
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Tgz Sec. 2.2 
Sidereal period of revolution of a grazing satellite; i.e., 
a secondary body having an orbit of semimajor axis 
equal to the radius of the primary body 

Tion Sec. 23.1 
Orbital period of a body orbiting at the ionization 
distance rion 

 
Sec. 4.3 

Period of variation in the proper elements of asteroid 
orbital motion 

T Sec. 6.8 Temperature 

Te Sec. 17.3 Electron temperature 

Ti Sec. 17.3 Ion temperature 

t Sec. 3.3 Time 

ta Sec. 12.3 
Time of accretion (time at which an accreting embryo 
would attain an infinite radius) 

tc Sec. 12.6, Eq. (12.6.6) Time of catastrophic increase of an accreting embryo 

tes Sec. 2.2 Eq. (2.2.3) 
"Time of escape" (the ratio of the radius of a body to 
its escape velocity) 

tI Sec. 16.3, Eq. (16.3.5) Duration of a current flow 

tinf Sec. 12.4 
Infall time (duration of infall of matter into the solar 
system) 

tj Sec. 12.5, Eq. (12.5.8) 
Time at which the small radius of a contracting jet 
stream would reach zero 

tres Sec. 16.5 
Residence time (the interval in which matter resides 
in the plasma state) 

tv Sec. 6.8 
Time between occurrence of collisions; inverse of 
collision frequency 

U Sec. 12.2, Eq. (12.2.3) Volume of a toroidal jet stream 

u Sec. 6.8 Relative velocity; "internal velocity" of a jet stream 

V Sec. 5.4 Electrostatic potential; voltage 

vb Sec. 21.8 Burning voltage 

VIon Sec. 15.3 Ionization voltage 

v Sec. 5.5 Velocity 

vcrit Sec. 15.3, Eq. (15.3.1) 
Critical velocity at which an infalling atom can 
become ionized 
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Sec. 21.8 
The experimental value of relative velocity of a 
plasma and a gas at which increased ionization 
occurs. 

ves Sec. 2.2, Eq. (2.2.2) Escape velocity 

vimp 
Sec. 12.10, Eq. 
(12.10.1) 

Impact velocity 

vion Sec. 21.4, Eq. (21.4.1) 
The value of infall velocity at which ionization of 
infalling matter can take place 

vm 
Sec. 12.12, Eq. 
(12.12.1) 

Velocity capable of imparting sufficient kinetic energy 
to melt a specified mass 

vorb Sec. 2.1 Orbital velocity of secondary body 

vrel 
Sec. 21.13, Eq. 
(21.13.3) 

Relative velocity 

W Sec. 8.2 Energy (potential and/or kinetic) 

Sec. 9.3 West 

Wm Sec. 12.12 Energy needed to melt a specified mass 

WT Sec. 17.3 Thermal energy 

w Sec. 9.2 Energy dissipation; power 

wT 
Sec. 12.10, Eq. 
(12.10.2) 

Thermal power per unit surface area delivered by 
impacting mass 

X Sec. 13.4, Eq. (13.4.3) Variable of substitution 

x Sec. 3.2 Rectilinear coordinate Iying in the horizontal plane 

Sec. 12.2 Small radius of a toroidal jet stream 

x0 Sec. 6.4 
Magnitude of the x axis of the epicycle described 
about a guiding center 

Y Sec. 13.4, Eq. (13.4-4) Variable of substitution 

y Sec. 3.2 Rectilinear coordinate Iying in the horizontal plane 

Z Sec. 13.3, Eq. (13.3-4) Variable of substitution 

z Sec. 3.2 Rectilinear coordinate in the axial direction 

 Sec. 2.3, Fig. 2.3.1 Sun 

 Sec. 2.1, Table 2.1.1 Mercury 
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 Sec. 2.1, Table 2.1.1 Venus 

 Sec. 2.1, Table 2.1.1 Earth 

 Sec. 2.1, Table 2.1.1 Moon 

 Sec. 2.1, Table 2.1.1 Mars 

 Sec. 2.1, Table 2.1.1 Jupiter 

 Sec. 2.1, Table 2.1.1 Saturn 

 Sec. 2.1, Table 2.1.1 Uranus 

 Sec. 2.1, Table 2.1.1 Neptune 

 
Sec. 2.1, Table 2.1.1 Pluto 

 Sec. 17.5 Ascending node 

 Sec. 17.5 Descending node 

 Sec. 6.8 Dimensionless proportionality factor 
Sec. 7.2, Eq. (7.2.4) Dimensionless constant 

 Sec. 2.2 
Ratio of radius of gyraffon to equatorial radius of 
body 

 
Sec. 2.2 

Normalized moment of inertia (moment of inerffa per 
unit mass and unit radius squared) 

 
Sec. 7.2, Eq. (7.2.5) Dimensionless constant 

 Sec. 11.2 Dimensionless proportionality factor 

 Sec. 21.2, Eq. (21.2.1) 
Specific gravitational potential of secondary body 
with respect to the primary body 

 Sec. 21.4, Eq. (21.4.2) 
Value of gravitational potential at which infalling 
matter can become ionized 

 Sec. 5.5, Eq. (5.5.4) Dimensionless proportionality factor 

 Sec. 7.2, Eq. (7.2.6) Dimensionless constant 

 
Sec. 16.5, Eq. (16.5.1) Dimensionless proportionality factor 
Sec. 3.3 Indicating incremental change 
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Sec. 6.7, Eq. (6.7.1) Geometrical factor 

Sec. 12.10, Eq. 
(12.10.6) 

Dimensionless proportionality factor indicating 
maximum in temperature profile of an accreting 
embryo 

Sec. 17.3 Degree of ionization 

Sec. 23.5 
Dimensionless proportionality factor; the normalized 
distance (the ratio of the orbital radius of a body to 
the ionization distance for its primary body) 

 Sec. 9.2 An angle 

 
Sec. 23.1, Eqs. 
(23.1.4)-(23.1.5) 

Dimensionless proportionality factor indicating degree 
of ionization of infalling matter 

 Sec. 9.3 Viscosity 

 Sec. 2.2 Mean density of a body 

 Sec. 8.3 An angle 

k Sec. 8.2, Eq. (8.2.3) Constant of integration 

 Sec. 3.6, Eq. (3.6.1) Dimensionless constant 

 Sec. 3.2 Meridional angle or latitude 

µ Sec. 16.3 Magnetic dipole moment 

µlm Sec. 16.4 

Lower limit of the magnetic dipole moment such that 
the tangential component of the magnetic field is 
equal to the magnitude of the total magnetic field 
strength 

v Sec. 6.8 Collision frequency; number of collisions per unit time 

 Sec. 13.1 Moment of inertia 

 Sec. 8.4, Eq. (8.4.1) Libration angle 

 Sec. 2.1 
3.1415 (ratio of the circumference to the diameter 
of a circle) 

 Sec. 6.8 Density of dispersed matter 

 
Sec. 2.4, Eqs. (2.4.1)-
(2.4.2) 

Distributed density (density of a secondary body's 
mass when distributed along the orbit of that 
secondary) 

 Sec. 2.1 Indicating summation 
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 Sec. 5.5 Cross section 

Sec. 6.8 Collision cross section 

Sec. 12.3, Eq. (12.3.1) Capture cross section 

 Sec. 15.1 Electrical conductivity 

 Sec. 12.7 Cross section of a jet stream 

 Sec. 2.2 Spin period of a body 

 Sec. 9.2, Eq. (9.2.1) Oblateness or ellipticity of a body 

 Sec. 15.3 Poloidal magnetic flux 

 
Sec. 4.3, Eqs. (4.3.4)-
(4.3 5) 

Longitude of proper perihelion 

 
Sec. 4.3, Eqs. (4.6)-
(4.7) 

Longitude of proper node 

 Sec. 3.2 Azimuthal angle or longitude 

 Sec. 6.7, Eq. (6.7.5) Constant, in number/cm3 

Sec. 11.2, Eq. (11.2.2) Constant, in cm K/g 

 Sec. 7.2, Eq. (7.2.6) 
Constant, in units of number times a variable power 
of mass 

 Sec. 7.2, Eq. (7.2.4) 
Constant, im units of number times a variable power 
of radius 

 Sec. 7.2, Eq. (7.2.5) 
Constant, in units of number times a variable power 
of cross section 

 Sec. 5.5 Energy flux 

 Sec. 8.2 An angle 

 Sec. 9.3 Rotational angular velocity 

 Sec. 13.3, Eq. (13.3.3) Rotational escape velocity 

 Sec. 6.4 Orbital angular velocity 

Subscripts 

. 

c Central or primary body 

sc Secondary body 
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em Embryo 

gn Grain 

Lm Limiting value 

0 
Initial value or parameter values for the guiding center 
or circular motion 

K 
Denoting orbital parameters for a body describing 
Kepler (circular) motion 

A Apocenter, aphelion, apogee, etc. 
P Pericenter, perihelion, perigee, etc. 

 Ascending (and descending) node 

x,y,z Components in the x, y, and z directions 

 Components in the r, , and  directions 

 

Sun, Mercury, Venus, Earth, Moon, Mars, Jupiter, Saturn, 
Uraus, Neptune, Pluto 
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[545-599] INDEX

 

A cloud (see clouds (A, B, C, D)) 
ablation (see grain ablation) 
abundances of elements, table 21.5.1 
accelerated particles during hetegonic era, 16.8 
accretion (see also accretional processes and models of solar system evolution) 

defined, 1.4 
general characteristics, 11.1 
formation of 

asteroids as a model of incomplete accretion, 18.7 
celestial bodies, 19.8, fig. 19.8.2, table 19.8.1 
comets compared to accretion of planets, 14.8 
embryo 

growth in jet stream, 12.3 12.6, fig. 12.6.1 
heating effects, 12.10, 12.12-12.13 
spin characteristics, 13.1-13.6 
temperature profile, 12.10 

grains 
fragmentation versus accretion, 7.1, 7.3-7.4, 11.5, 12.3, 22.7 
hydromagnetic effects on grains in plasma, 15.5 
resultant orbital and physical properties of grains, 11.7, 15.1, 15.5 
selective accretion of metallic grains, 20.5 

planets 
temperature profile, 12.11, fig. 12.11.1 
time required, 12.8-12.9, table 12.8.1, fig. 12.9.1 

in jet streams, brief summary, 22.5 
possible present-day examples 

Hilda and Trojan asteroids, Thule, 11.6 
theory 
necessary properties, 11.7 
simple model, 12.3-12.8 
limitations, 12.7 
and size spectra, 7.3 
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of volatile substances 
compared to solid grains, 18.11 
by gravitational accretion, 12.3 
in jet streams, 16.7, 18.11 

accretion, gravitational 
general characteristics, 11.4 
and embryo spin, 13.1, 13.3-13.4 
Giuli's theory, 13.4-13.5 
statistical 
defined, 13.5 
general characteristics, 13.5 
and spin period and inclination, 13.6, fig. 13.6.1 
transition from nongravitational accretion to gravitational accretic 7.4, 12.3 
accretion, nongravitational (see also fluffy aggregates) 
general characteristics, 11.5 
basic difficulties and solutions, 11.5 
and density waves, 14.3, 14.8, 19.3 
and embryo spin, 13.2 
of fluffy aggregates in space 
electrically polarized grains, 7.4, figs. 7.4.1-7.4.2, 11.5, 12.3 
magnetized grains, 12.3, 22.7, fig. 22.7.1 
and jet streams, 11.5 
transition from nongravitational accretion to gravitational accretic 12.3 
accretion, runaway 
definition, 11.4 
and mass of accreting body, 12.6, fig. 12.6.1 
time of initiation, 12.6, fig. 12.6.1 
types 
early 
defined, 12.9 
for planets, 12.9, fig. 12.9.1 
and spin inclination of embryo, 13.6, fig. 13.6.1 
and temperature profile of embryo, 12.10-12.11 
delayed 
defined, 12.9 
for planets, 12.9, fig. 12.9.1 

and spin inclination of embryo, 13.6, fig. 13.6.1 
and temperature profile of embryo, 12.10-12.11 

late 
defined, 12.9 
for planets, 12.9, fig. 12.9.1 
spin inclination of embryo, 13.6, fig. 13.6.1 
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temperature profile of embryo, 12.10-12.11 
accretion, statistical (see accretion, gravitational) 
accretional catastrophe (see accretion, runaway) 
accretional processes 
and chemical differentiation of accreted body 
formation of crust, core, mantle, 12.13, 20.5 
hot spot front 
general characteristics, 12.12-12.13 
supportive evidence on Moon and Earth, 24.7 
and embryo spin, 13.1-13.6 
and heating effects (see also heating effects) 
planetesimal impact melting, 12.12-12.13, 20.3 
temperature profiles of accreted bodies, 12.10-12.11 
in jet streams 
brief summary, 22.5 
general characteristics, 11.1, 12.6 
by density waves, 14.3, 14.8, 19.3 
in meteor streams, 14.3 
versus fragmentation processes (see also collisions) 
in asteroid belt, 7.1, 7.3 
summary of collision effects, 12.3, 22.8 
transition between fragmentation and accretion, 7.4, 12.3 
accumulation (see accretion) 
actinides and gravitative differentiation, 12.13 
actualistic principle 
defined, 1.1 
applications of 
hetegonic plasma, 15.4 
interpretation of meteorite phenomena, 22.1 
models of accretion, 11.7 
partial corotation, 18.1 
present structure of the solar system, 15.1 
in studying solar system evolution, 1.1, 11.1 
age (crystallization, degassing, gas retention and exposure) in meteorites, 22.9 
aggregates (see grains, accretion of) 
aggregation (see accretion, nongravitational) 
alpha-Capricornid meteor stream association with comet, 14.4 
Amalthea (see Jovian satellite system) 
Amor asteroids (see Apollo-Amor asteroids) 
angular momentum, orbital 
defined, 2.1 
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of accreting grains and embryo spin, 13.1 
distribution in solar system and Laplacian model, 2.4-2.5, 16.2 
and gravitational collapse, 11.2, 16.2 
and orbital stability, 10.1 
for planets and satellites, table 2.1.1, figs. 2.3.1-2.3.4 
transfer from primary by hydromagnetic effects during formation of secondary bodies 
introduction, 16.1-16.2 
model derivation, 16.3, fig. 16.3.1 
modifications of model, 16.3-16.5 
outer limit of solar angular momentum transfer, 19.1-19.2 
Apollo-Amor asteroids 
definition, 4.6 
orbital parameters, 4.6, fig. 4.4.1 
genetic relationships 
with comets, 4.6 
with meteorites, 22.2 
hetegonic model, 19.8, fig. 19.8.2, table 19.8.1 
traditional view, 19.8, fig. 19.8.1 
apparent attraction, 6.4-6.5 
approach, "first" and "second" (see plasma, pseudo, and plasma, real) 
Ariel (see Uranian satellite system) 
asteroidal families 
defined, 4.3 
general characteristics, 14.7 
asteroidal jet streams (see jet streams, types) 
asteroids (see also Apollo-Amor, Hilda, Hungaria, main belt, subvisual and Trojan 
asteroids; Ceres; Thule; Toro; Vesta) 
formation and genetic relationships 
accretion of asteroids in jet streams 
summary, 14.7 
asteroidal families, 4.3, 14.7 
asteroidal jet streams, 4.3, 14.7 
hetegonic model, 19.8, fig. 19.8.2, table 19.8.1 
origin from exploded planet, 4.3, 11.8, 19.8 
meteorite origin from asteroids, 22.2 
motivation for asteroidal studies, 4.3, 18.7 
orbital motion 
forces governing, 5.1-5.2, fig. 5.1.1 
orbital parameters, 4.1, 4.3-4.5, table 4.3.1, figs. 4.3.1-4.3.3, table 9.7.1 
resonances, 8.5, table 8.5.1 
physical properties 
composition, 20.5, table 20.5.1, fig. 20.7.1 
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mass, 4.3, table 4.3.1 
mass distribution, 4.1, 4.3, fig. 4.3.4 
and resonance gaps, 4.3, fig. 4.3.4 
(M,a) diagram, fig. 4.3.4 
radius, equatorial, table 4.3.1 
size spectra, 4.3 
surface layer composition, 20.5 
compared to that of known meteorites, 22.2 
visual magnitude, tables 4.3.1, 9.7.1 
atmosphere, terrestrial 
formation theories 
summary, 26.7 
accretion phenomena, 26.1, 26.3-26.4 
post-accretional degassing of the Earth, 26.2-26.3, 26.5 
planetesimals as source of atmosphere, 26.2 
atomic abundances of cosmically important elements, table 21.5.1 
aurorae as examples of cosmic plasmas, 15.3 
B cloud (see clouds (A, B, C, D)) 
band structure of spacing between secondary bodies 
general discussion, 21.1 
basic model, 21.11, figs. 21.11.1-21.11.2 
apparent exceptions to model, 21.2, 23.9 
bands of secondary bodies (see also band structure; gravitational potential energy) 
defined, 21.2, fig. 21.2.1 
general description, 21.2 
and bands of elements, 21.5, fig. 21.5.1, table 21.5.1 
chemical composition of bands 
basic model, 21.11-21.12, figs. 21.11.1-21.11.2 
comparison with bands of elements, 21.5, fig. 21.5.1, table 21.5.1 
effects of transplanetary condensation, 21.12, fig. 21.12.3 
comparative study of groups within each band, 21.3 
formation of bands, 21.11-21.12 
slope of bands, 23.9 
C cloud (see clouds (A, B, C, D)) 
Callisto (see Jovian satellite system) 
capture, resonance (see resonance) 
capture theory for satellites 
Moon 
brief summary, 24.9 
general description, 24.4 
destruction of Earth's satellites, 24.6 
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tidal evolution of lunar orbit, 24.5, fig. 24.5.1 
retrograde satellites, 24.4 
Cassini's division (see Saturnian rings, structure) 
catastrophic accretion (see accretion, runaway) 
celestial mechanics 
guiding center approximation, 3.1-3.7 
treating orbital motion, 5.1-5.2 
central body (see primary body) 
Ceres (see also asteroids) 
physical properties 
mass, radius, density, table 20.5.1 
spin period, table 9.7.1 
surface features, 20.5 
visual magnitude, table 9.7.1 
semi-major axis, fig. 20.7.1, table 20.5.1 
chemical differentiation (see differentiation, chemical) 
chemical separation (see differentiation, chemical) 
chondrites (see meteorites) 
chondrules (see meteorites) 
chromosphere as an example of a cosmic plasma, 15.3 
circumstellar dust envelopes 
and information on early solar system environment, 15.4 
circumstellar regions, ionization in, 15.1 
cloud, source (see source cloud) 
clouds (A, B, C, D) 
defined, 21.11 
introduction, 2.5, 18.10, 21.11 
associated gravitational potential energy bands, 21.11, figs. 21.11-21.11.2 
bodies formed in each cloud, 21.11, 23.8 
composition of clouds 
basic model, 21.11-21.12 
compared to bodies formed in each cloud, 21.11 
mass distribution, 23.6-23.8 
controlling element, 21.11, figs. 21.11.1-21.11.2 
dominant critical velocity, 21.11, fig. 21.11.2 
overlapping of clouds 
general discussion, 24.1 
affecting composition of Moon and Earth, 24.8 
collapse, gravitational (see gravitational collapse) 
collision velocity 
of asteroids, 11.5 
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effects on fragmentation and accretion, 7.4, 11.5, fig. 22.8.1 
in jet streams, 11.5 
subsonic, 12.3 
supersonic, 12.3, 22.6 
collisions (see also fragmentation; accretion; negative diffusion) 

and accretional processes 
accretion versus fragmentation, 7.4, 12.3, 22.8, fig. 22.8.1 
nongravitational accretion, 7.4, 11.5, 22.7 
of polarized particles, 7.4, figs. 7.4.1-7.4.2, 11.5, 12.3 
of magnetized particles, 12.3, 22.7, fig. 22.7.1 
grains condensing from a partially corotating plasma, 18.2.1 
heating effects, 12.12-12.13 

effects on orbital motion 
in general, 5.2, fig. 5.1.1, 6.3, 6.6-6.9, 18.2 
and Kirkwood gaps, 8.6 
negative diffusion, 6.6, fig. 6.6.1 
evidence from meteorites, 22.6 
perturbing Kepler motion, 5.2 
in jet streams 
contraction of jet streams, 6.8 
energy loss due to collisions, 12.5 
evidence from meteorites, 22.6 
coma, cometary, 4.1 
cometary asteroids (see Apollo-Amor asteroids) 
comets 
composition 
inferred from emissions, 14.6 
mass, 4.1 
nuclei, 14.3-14.4, 14.6 
formation and genetic relationships 
hetegonic model, 19.8, fig. 19.8.2, table 19.8.1 
in meteor streams, 14.2-14.5, 19.6, 19.8 
as source of 
Apollo-Amor asteroids, 4.6 
meteorites, 22.2 
traditional view, 11.8, 19.8, fig. 19.8.1 
orbital motion 
governing forces and effects, 5.1-5.2, fig. 5.1.1 
diffusion in aphelion due to planetary encounters, 19.5 
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orbital parameters, 4.6, fig. 4.6.1 
comets, long-period, 4.6 
formation and genetic relationships 
accretion in meteor/jet streams in transplanetary space, 19.3-19.4,19.6, fig. 19.8.2 
alternative views of origin, 19.4 
origin in interstellar space, 4.6 
primeval matter in solar system, 19.5 
and short-period comets, 14.5 
comets, short-period 
definition, 4.1, 4.6 
formation and genetic relationships 
and long-period comets, 4.6, 14.5 
close approach to Jupiter, 14.5 
in meteor streams, 14.5, 19.8 
comet cloud, Oort's, 14.5, 19.4 
cometary reservoir, 4.6, 14.5, 19.4 
commensurability (see resonance) commensurability , near - 
general characteristics, 8.9 
as broken resonance, 8.9 
examples, 8.9 
relation to retrograde satellites, 8.9 
and stability of orbital motion, 10.2 
comparative studies of planets/satellites 
asteroid belt and Saturnian rings, 18.8 
composition of celestial bodies, 20.7 
composition of Earth and Moon, 24.8 
to deduce origin of Moon, 24.2-24.4 
groups of secondary bodies 

mass distribution, 23.7 
within each band of gravitational potential energy, 21.3 

satellite systems, 24.2 
to understand early properties of the Sun, 25.1-25.5 
composition of celestial bodies (see also planets and satellite systems by name) 
direct determinations 
difficulty of interpretation, 20.3-20.4 
sources of information, 20.2 
theoretically deduced 
limitation upon deduction due to unknown 
solar composition, 20.6 
states of matter, 20.4 
Laplacian model, 20.1, 20.6-20.7 
as function of 
mass, 20.5, figs. 20.5.1 20.5.2 
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primary's radiation, 20.7, 25.5 
radial distance from primary, 20.7 
from hetegonic processes of 
accretion, 12.12-12.13 
emplacement of matter, 21.11-21.12 
condensation (see also condensation, transplanetary) 
condensation products 
and formation of celestial bodies, 19.8, fig. 19.8.2, table 19. 
interpretation of meteorite data, 22.1 
occlusion of noble gases during crystal growth, 26.2 
orbital parameters of resulting matter, 17.5, fig. 17.5.1 
in cosmic plasmas 
in filaments or superprominences, 16.7 
from partially corotating plasma, 17.5, fig. 17.5.1 
processes in plasma environment, 15.3, 26.2 
factors affecting 
thermal radiation of early Sun, 2.5, 20.7, 25.5 
transfer of angular momentum from primary to seconder 16.5, fig. 16.6.1 
of grains 
from plasma 
in circumstellar regions, 15.1 
cosmic plasma, 15.3 
partially corotating plasma, 17.5, fig. 17.5.1, 18.2, fig.18.2.1 
temperature considerations, 15.3, 22.1 
condensation, transplanetary 
defined, 19.1 
condensation products, 19.3 
ablation in plasma clouds, 21.12 
formation of celestial bodies, 19.8, fig. 19.8.2, table 19.8.1 
formation of jet streams, 19.3 
controlling element (see element, dominant/controlling) 
core (see Earth, composition; Venus, composition) 
cosmic atomic abundances 
listed, table 21.5.1 
and composition of celestial bodies, 20.1 
cosmic plasma physics (see plasma physics) 
cosmic rays and irradiation of meteorites, 22.9 
coupling, resonance (see resonance) 
crepe ring (see Saturnian rings) 
critical velocity 
defined, 21.8 
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general characteristics, 21.8, eq. 21.10.1 
dominant/controlling critical velocity 
basic discussion, 21.11, figs. 21.11.1-21.11.2 
and composition of clouds (A, B, C, D), 21.12, figs. 21.12.1-21.12.2 
experiments, 21.7-21.8 
theoretical studies 
review cited, 21.9 
analogy to Franck-Hertz law, 21.9 
values of critical velocity for 
elements, table 21.5.1 
polynuclear molecules, 21.11 
critical velocity phenomenon 
brief discussion, 21.7 
discussion of ionization velocity, 21.4-21.5 
for different gases (H, He, Ne, O, D, Ar), 21.8 
in partially corotating plasma, 21.13 
critical velocity sphere defined, 23.2 
cross-section spectra, 7.2 
crust (see Earth, composition; Moon, composition; differentiation; heating effects) 
currents in hetegonic plasmas (see plasma, hetegonic) 
D cloud (see clouds (A, B, C, D)) 
dark clouds 
properties of, 1.4, 15.4 
formation of bodies in, 15.4, 25.7 
degassing of Earth's interior as suggested source of atmosphere, 26.2-26.3, 26.5 
Deimos (see Martian satellite system) 
density, average 
of asteroids (Ceres, Vesta), table 20.5.1 
of planets, table 2.1.1, table 20.5.1 
of satellites, table 20.5.1 
density, distributed 
defined, 2.4 
of the planets, 2.5, table 2.1.1, fig. 2.5.1 
of the satellites, 2.5, table 2.1.2 
Jovian, fig. 2.5.2 
Saturnian, fig. 2.5.4 
Uranian, fig. 2.5.3 
density waves in jet streams, 14.3, 14.8, 19.3 
deuterium-burning Sun, 25.6 
deuterium, critical velocity of, 21.8 
diamond in meteorites, 11.8 
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dielectric particles in space, 7.4 
dielectric polarization (see electrostatic polarization) 
differentiation, chemical 
and composition of celestial bodies, 20.3 
during accretion (see also hot spot front) 
heating effects, 12.12- 12.13 
gravitational effects, 12.12 12.13 
of volatiles, 21.12, 26.4 
during condensation, 21.12 
during emplacement of matter, 21.11 
of Earth, 12.12-12.13, 20.5, 26.7 
lacking in small bodies, 20.3 
of Moon, 12.12-12.13, 24.7 
Dione (see Saturnian satellite system) 
disc of uniform density (see Laplacian-type models) 
disruption (see fragmentation) 
distributed density (see density, distributed) 
dominant critical velocity (see critical velocity, dominant) 
double planet systems, general discussion, 24.1 
double-layer, electrostatic (see electrostatic double-layer) 
dust, interplanetary (see condensation, transplanetary; interplanetary dust) 
dusty plasma (see plasma, dusty) 
Earth (see also planets) 
atmosphere (see atmosphere, terrestrial) 
ocean (see ocean) 
formation and accretion effects (see also accretion) 
brief summary, 26.3 
of core, crust and mantle, 12.10-12.13, fig. 12.11.1, 20.5, 26.3, 26.5 
orbital parameters, table 2.1.1 
physical properties, table 2.1.1 
composition, 20.5, table 20.5.1, figs. 20.5.1, 20.7.1 
core, 20.5 
crust, 26.3, 26.5 
mantle, 20.5, 26.3, 26.5 
and overlap of A and B clouds, 24.8 
spin 
as acquired during accretion, 13.1-13.6 
changes due to lunar tidal braking, 9.4 
inclination of spin axis, 13.6 
prior to capture of Moon, methods of estimation 24.3 
temperature profile 
and accretion processes, 12.10-12.11, fig. 12.11.1, 20.5 
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evidence against complete melting, 26.3 
and formation of ocean and atmosphere, 26.3, fig. 26.3.1 
satellites (see also Moon) 
absence of regular system, 21.2, 23.9 
prior to Moon capture 
brief summary, 24.9 
and lunar mare and basins, 24.6, fig. 24. 
destruction of regular satellites, 24.6 
mass of satellites, 24.3, fig. 24.3.1 
number of satellites, 24.3, fig. 24.3.2 
tides 
amplitude, table 9.2.1, fig. 9.4.1 
tidal braking by the Moon, 9.4 
eccentricity 
definition, 2.1 
guiding center treatment, 3.3 
for orbits of 
asteroids, 4.3-4.4, figs. 4.3.1, 4.4.1, table 4.3.1 
comets, fig. 4.6.1 
meteor streams, fig. 4.6.1 
planets, table 2.1.1 
satellites, table 2.1.2 2.1.3 
of 1/3 for orbits of grains condensed from partially corotating plasma, 17.5, fig. 
17.5.1 
ejecta (see collisions; fragmentation) 
electret particles in space, 7.4, figs. 7.4.1-7.4.2 
electric breakdown analogy to critical velocity phenomena, 21.4 
electric polarization of 
interplanetary dust, 7.4, figs. 7.4.1-7.4.2 
grains and accretion processes, 11.5, 12.3 
electromagnetic effects (see also hydromagnetic effects, magnetic effects) 
in interplanetary plasma, 1.4, 5.3, fig. 5.1.1, 15.1 
ionization and arrest of infalling gas, 21.4 
electron energy increase associated with critical velocity phenomenon, 21.8 
electrostatic double layers in plasmas 
general properties, 15.3, fig. 15.3.1 
experimental review cited, 15.3 
in magnetosphere, 16.3 
electrostatic polarization of grains in space, 7.4, figs. 7.4.1-7.4.2, 11.5, 12.. 
element, dominant/controlling 
for clouds (A, B, C, D), 21.11-21.12 
and critical velocity phenomenon, 21.11 
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ellipticity (see oblateness) 
embryo (see also planetesimal) 
accretion 
in jet streams, 12.3-12.6 
brief summary, 12.6, fig. 12.6.1 
heating effects, 12.12-12.13 
spin produced by accretion, 13.1-13.6 
as function of size and mass, 13.3 
inclination of spin axis, 13.6 
prograde, 13.4 
retrograde, 13.4 
temperature profile, 12.10 
emplacement of matter (see also critical velocity) 
composition of accreted bodies, 20.5 
energy release during emplacement, 23.1 
ionization of infalling gas, 21.2-21.5, 21.11, figs. 21.11.1-21.11.2, 23.1-23.4 
positioning of gravitational potential energy bands, 21.11, figs. 21.11.1-21.11.2 
spacing among groups of secondary bodies, 21.2-21.5, 21.11, figs. 21.2.1-21.2.2 
and spin of primary body, 23.1-23.10 
Enceladus (see Saturnian satellite system) 
energy release 
during emplacement of matter, 23.1 
during transfer of angular momentum from primary to secondary body17.6 
envelopes, circumstellar dust (see circumstellar dust envelopes) 
epicycle (see guiding center method; orbital motion) 
escape velocity 
defined, 2.2 
for planets, table 2.1.1 
Europa (see Jovian satellite system) 
evolutionary stages in development of a primary/secondary system 
pertient studies of 
small bodies, 4.1-4.3, 18.7, 22.1, 22.10 
spin of celestial bodies, 9.1, 9.8 
brief synopsis, 1.3, 16.6, fig. 16.6.1, fig. 16.7.1, 27.1 
formation of the Sun, 1.4, 25.7 
emplacement, ionization and plasma capture of matter (see also emplacement; 
ionization of infalling gas; critical velocity phenomeno: 
brief description, 1.3 
basic characteristics, 1.4 
ionization of infalling gas, 21.2-21.5, 21.11, figs. 21.11.1-21.11, 23.1-23.4 
resulting mass distribution as a function of primary spin, 23.5-23. 
hydromagnetic transfer of angular momentum (see also angular momentum, transfer; 
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condensation; partial corotation) 
transfer of angular momentum from primary to secondary, 16.1-16.6 
partial corotation 
defined, 17.1 
general characteristics, 17.2 
observational verification, 18.6, 18.8-18.9 
condensation 
summary, 19.8, fig. 19.8.2, table 19.8.1 
from partially corotating plasma, 17.5, fig. 17.5.1 
and primary's radiation, 2.4, 20.7, 25.5 
temperature considerations, 1.4, 15.3, 22.1 
accretional (see also accretion) 
defined, 1.3 
general characteristics, 1.4, 11.1 
summary, 19.8, fig. 19.8.2, table 19.8.1 
general prerequisites, 11.7 
in jet streams; brief summary, 21.4, fig. 21.4.1, 22.5 
possible present-day examples, 11.6 
types of accretion 
planetesimal, 11.3 
gravitational, 11.4 (see also accretion, gravitational) 
nongravitational, 11.5 (see also accretion,nongravitational) 
post-accretional (see also stability of orbits) 
defined, 1.3 
general characteristics, 1.4 
in asteroid belt, 4.2, 10.3 
resonance structures, 10.2 
Saturnian rings, 10.3 
spin isochronism, 10.4 
stability of orbital motion, 10.1 
exact resonance (see resonance) 
exploded planet hypothesis for origin of small bodies 
asteroids, 4.3, 11.8, 19.8, fig. 19.8.1 
comets, 11.8 
meteorites and meteoroids, 11.8, 22.1, 26.2 
arguments against explosion hypothesis, 11.8 
exposure dosage in meteorites, 22.9 
fall-down ratio (see two-thirds law) 
families, asteroidal 
general characteristics, 14.7 
relation to jet streams, 4.3 
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similarity of orbital parameters, 4. 
Ferraro isorotation 
basic assumptions, 16.3 
general characteristics, 16.3 
resulting plasma distribution, 17.2 
filaments in plasmas (see hydromagnetic effects; plasma, real; super-prominences) 
first approach (see plasma, pseudo) 
Flora family of asteroids, 4.3 
fluffy aggregates (see also grains, accretion) 
formation of, 7.4, figs. 7.4.1-7.4.2, 11.5, 12.3, 22.7, fig. 22.7.1 
accretion of, 7.4, 11.5, 12.3 
fluffy state of matter 
knowledge of 
basic lack, 20.4 
experimental studies, 7.4 
in meteorites, 20.4, 22.7, fig. 22.7.1 
examples 
surface of Martian satellites, 20.4, fig. 20.4.1 
in meteorites, figs. 7.4.1-7.4.2, fig. 22.3.1 
focusing (see apparent attraction; Kepler motion, collision preturbed; jet 
streams) 
formation of planets and satellites (see accretion) 
formation of stars 
by gravitational collapse, 11.2 
by stellesimal accretion, 25.7 
formative era (see hetegonic era) 
fractionation (see differentiation, chemical) 
fragmentation 
simple model and size spectra, 7.3 
transition between fragmentation and accretion, 7.4, 12.3 
versus accretion 
in asteroid belt, 7.1, 7.3 
evidence in meteorites, 22.4-22.8, fig. 22.8.1 
summary of collision effects, 22.8, fig. 22.8.1 
front, hot spot (see hot spot front) 
frozen-in field lines 
description, 15.3, table 15.3.1 
and Ferraro isorotation, 16.3, fig. 16.3.1 
gale, solar (see solar gale) 
Ganymede (see Jovian satellite system) 
gaps (see Kirkwood gaps; resonance effects) 
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gas, accretion, 11.4 (see also volatiles) 
gas, infall 
duration of infall, 12.8, 12.10 
general discussion, 21.1 
ionization of, 21.2-21.5, 21.11, figs. 21.11.1-21.11.2, 23.1-23.4 
interaction with plasma (see critical velocity phenomenon) 
gas content of jet streams (see jet streams, composition) 
genealogy of celestial bodies 
hetegonic model, 19.8, fig. 19.8.2, table 19.8.1 
traditional view, 19.8, fig. 19.8.1 
Giacobinid meteors 
composition compared to that of chondritic meteorites, 22.2 
Giacobini-Zinner comet, 22.2 
Giuli's gravitational accretion theory, 13.4-13.5 
grain ablation of transplanetary condensates passing through plasma clouds, 21.12 
grains 
accretion (see also accretion) 
required orbital and physical properties of the grains, 15.1, 15.5, 11.7 
gravitational accretion 
imparting spin to embryo, 13.1-13.6 
in jet streams, 12.3-12.6 
nongravitational accretion 
electrically polarized grains, 7.4, figs. 7.4.1-7.4.2, 11.5, 12.3 
magnetized grains, 12.3, 22.7, fig. 22.7.1 
selective accretion of metal grains, 20.5 
composition, 26.2 
condensation (see also condensation of grains) 
condensation products 
crystal growth, 26.2, fig. 7.1.1 
interpretation from meteorite data, 22.1 
condensation environment 

in cosmic plasmas, 15.1, 15.3, 26.2 
in filaments or superprominences, 16.7 
in partially corotating plasmas, 16.5,fig. 16.6.1, 17.5,fig. 17.5.1 
radiation, 5.5, 11.5 

temperature considerations, 15.3, 22.1 
thermal radiation of primary, 2.4, 20.7, 25.5 
orbital motion governed by 
accretional processes, 11.7 
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collisions, 5.2, 6.3, 6.9, fig. 6.9.1, 18.2 
gravitational and electromagnetic forces, 5.4 
partially corotating plasma, 17.1, 17.5, 18.2 
grains, asteroidal (see subvisual asteroids) 
gravitational accretion (see accretion, gravitational) 
gravitational collapse (see also Laplacian-type models) 
formation of stars, planets and satellites, 11.2 
objections against, 11.2, fig. 11.2.1, table 11.2.1, 21.1 
gravitational effects 
formation of jet streams, 6.4-6.5 
on orbital motion 
of large bodies, 5.2, fig. 5.1.1 
of small bodies, fig. 5.1.1, 5.4 
of secondary versus primary body, 11.2, fig. 11.2.1, table 11.2.1 
gravitational potential energy 
defined, 21.2 
of bands of secondary bodies, 21.2, fig. 21.2.1 
of cosmically important elements, 21.5, table 21.5.1, fig. 21.5.1 
density of celestial bodies, 20.7, figs. 20.7.1, 21.12.3 
equated to ionization energy to study band formation, 21.5, fig. 21.5.1, table 21.5.1 
ionization of infalling gas, 21.4 
gravitational potential energy bands (see bands of secondary bodies) 
gravitative differentiation (see differentiation; heating effects) 
grazing planet (satellite) 
defined, 2.3 
orbital parameters, table 2.1.1 (table 2.1.2) 
groups of secondary bodies (see also bands of secondary bodies) 
introduction, 2.5 
listed, table 2.5.1, 18.10 
and clouds (A, B, C, D), 23.8 
comparative study, 21.3 
formation of groups, 18.10, fig. 18.10.1, 23.1-23.4 
absence of expected groups explained, 21.2, 23.8 
and gravitational potential energy bands 
description of bands, 21.2, fig. 21.2.1 
relation to primary mass, 21.2, fig. 21.2.1 
properties 
mass distribution within each group, 23.6-23.7, fig. 2: 
number of bodies in each group 

as a function of  figs. 23.5.1, 23.6.1, 24.3, fig. 24.3.2 
spacing between groups 
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basic model, 21.11, figs. 21.11.1-21.11.2 
between Mars and Jupiter, 18.10 
and emplacement of matter, 21.2-21.5, fig. 21.2, fig. 21.11.2 
spacing within a group, 18.10 
guiding center method (see also orbital motion) 
definition, 3.1 
motivation, 3.1 
and apparent attraction, 6.4-6.5 
and eccentricity, inclination, pericenter and nodes, 3.3 
in unperturbed 1/r2 gravitational field, 3.4 
of orbit with large eccentricity, 3.5 
hardness spectrum of radiation 
in Fayetteville meteorite, fig. 22.9.1 
heat, solar 
prevention of condensation, 2.5, 20.7, 25.5 
heat front (see hot spot front) 
heating, frictional (see grain ablation; pericentric frictional heating) 
heating, pulsed (see pericentric frictional heating) 
heating effects (see also differentiation; hot spot front) 
during accretion 
of growing embryo, 12.10 
of planets, 12.11 12.13, fig. 12.11.1 
due to impact of accreting grains and planetesimals, 12.12-12.13, 20.3 
temperature profiles of accreted bodies, 12.10 12.11 
evidence 
in meteorites, 11.8, 22.4, 22.6 
in lunar and terrestrial crusts, 24.7 
frictional heating at pericenter of orbit, 11.8, 21.12, 22.4 
melting of planetary interior by radiogenic heat, 20.5 
primary's radiation and composition of secondary, 20.7, 25.5 
helium, critical velocity of, 21.8 
hetegonic, defined, 1.2 
hetegonic effects, evidence of in 
asteroid belt, 10.3, 18.8, fig. 18.8.1 
meteorites, 16.1, 22.1, 22.6, 22.9-22.10 
resonances, 8.5, 10.2 
Saturnian rings, 8.7, 10.3, 18.6, figs. 18.6.3-18.6.4 
hetegonic era (see also models of solar system evolution, hetegonic) 
differentiation processes during, 20.3 
magnetic fields during, 16.1, 16.3, table 16.3.1, 19.2, 25.2-25.3 
solar radiation during, 5.5, 16.8, 22.9, 25.5 
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hetegonic jet streams (see jet streams, types) 
hetegonic nebulae (see nebulae, hetegonic) 
hetegonic principle 
introduced, 1.2 
general characteristics, 16.9, fig. 16.9.1 
limitation of, 16.9 
applications to 
composition of celestial bodies, 20.7 
formation of clouds (A, B, C, D), 21.11 
formation of planetary and satellite systems, 21.11 
interpretation of meteorite data, 22.1 
origin of Moon, 24.1-24.4 
resonance theory, 9.6 
study of early Sun, 25.1 
mass, 25.2 
magnetic field, 25.3 
radiation, 25.5 
spin period, 25.4 
hetegonic processes (see evolutionary stages) 
hetegonic shadow 
defined, 18.6 
examples 
Jupiter, 18.8, fig. 18.8.1 
main belt asteroids, 18.8, fig. 18.8.1 
Mimas, 18.6, figs. 18.6.3-18.6.4 
Saturnian rings, 18.6, figs. 18.6.3-18.6.4 
hetegony 
defined, 1.2 
high pressure experiments 
and composition of core material in celestial bodies, 20.4 
Hilda asteroids 
orbital motion 
orbital parameters, 4.4, fig. 4.3.3 
and Kirkwood gaps, 8.6 
resonance with Jupiter, 4.4, 8.5, fig. 8.5.4, table 8.5.1 
possible present-day accretion, 11.6 
Hirayama families 
definition, 4.3 
and "proper elements" of asteroid orbits, 4.3, fig. 4.3.5, table 4.3.2 
homogeneous disc as precursor medium for planetary system (see Laplacian-type 
models) 
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Homopolar device for critical velocity experiments, 21.8 
Honda-Mrkos-PaJduskova comet, 14.4 
hot spot front 
defined, 12.12 
brief summary, 26.4 
general characteristics and effects, 12.12-12.13 
differentiation of accreting body, 12.13, 20.5 
release of water from impacting planetesimals, 26.4 
supportive evidence 
volatile loss from Earth and Moon, 24.7 
Hungaria asteroids 
orbital motion, 4.4, fig. 4.4.1, fig. 4.3.3 
possible resonance with Jupiter, 4.4 
hydrated minerals in meteorites, 11.8 
hydrogen, critical velocity of, 21.8 
hydromagnetic effects 
brief summary, 15.5 
in cosmic plasmas, 1.4, 15.3, 15.1 
during transfer of angular momentum from primary to secondary body 
heating and ionizing of plasma, 17.6 
magnitude of effects, 16.2-16.6 
model of transfer, 16.3 
ionization and arrest of infalling gas, 21.2 21.5, 21.11, figs. 21.11.1-21.11.2, 23.1 
23.4 
hydromagnetic parameter, characteristic 
defined, 15.1 
values, table 15.1.1 
hydroxyl 

emission from comets, 14.6 
source of ocean and atmosphere in planetesimal hydroxysilicates, 26.2 

hydroxysilicates in planetesimals and meteorites 
postulated origin in exploded planet, 26.2 
grown in laboratory, 26.2 
Hyperion (see Saturnian satellite system) 
Iapetus (see Saturnian satellite system) 
icy conglomerate 
as comet nucleus, 14.3 
impact (see collisions) impact melting 
differentiation of embryo matter, 12.12-12.13 
due to accreting planetesimals, 12.12-12.13, 20.3 
hot spot front, 12.12 12.13, 20.5, 26.4 
impurities in clouds (A, B, C, D) 21.11-21.12 
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inclination, orbital 
asteroids 4.3-4.4, figs. 4.3.2, 4.4.1, table 4.3.1 
comets, fig. 4.6.1 
guiding center approximation, 3.3 
meteor streams, fig. 4.6.1 
planets, table 2.1.1 
satellites, tables 2.1.2-2.1.3 
inclination of equator to orbital plane 

and accretion processes, 13.6 
of the planets, table 2.1.1, fig. 13.6.1 

inelasticity of collisions (see negative diffusion) 
evidence from meteorites, 22.6 
and negative diffusion theory, 6.6 

inertia, normalized moment of 
defined, 2.2 
for planets, table 2.1.1 
infall of matter 
defined, 21.1 
general characteristics, 21.1 
basic model, 21.11-21.12, figs. 21.12.1-21.12.2 
interaction with local plasma 
introduction, 21.4 
arrest of infall due to 
ionization, 23.1-23.10 
trapping in clouds (A, B, C, D) 21.12, fig. 21.12.2 
energy release, 23.1 
resulting mass distribution, 23.1-23.10 

resulting spacing of bodies, 21.2-21.5, figs. 21.2.1, 21.11.2, 23.6, fig. 23.6.1 
infall velocity and arrest of infalling gas, 21.4 (see also critical velocity phenomenon) 
infall time (see time (duration) of infall of matter) 
instabilities in plasma, 15.3 
instability, gravitational (see gravitational collapse) 
interaction, mutual effects of particles and orbital motion, 6.4 
internal electric polarization (see electrostatic polarization) 
internal velocity (see velocity, internal) 
interplanetary condensation (see condensation) 
interplanetary dust (see also grains; condensation, transplanetary) 
accretion to form celestial bodies, 19.8, fig. 19.8.2, table 19.8.1 
forces governing orbital motion, 5.1-5.6, fig. 5.1.1 
interplanetary medium 
defined, 6.2 
effects on orbital motion, 6.2 
interplanetary space 
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defined, 19.2 
interstellar dust 
in transplanetary space, 19.3 
interstellar molecules, critical velocity of, 21.11 
Io (see Jovian satellite system) 
iodine 
I129/Xe129 ratios in meteorites, 22.9 
ionization 
in circumstellar regions, 15.1 
degree of 
in cosmic plasmas, 15.3 
in hetegonic plasmas, 15.1, 23.1-23.4 
ionization distance (see also critical velocity phenomenon) 
introduced, 21.4 
and mass distribution within groups of secondary bodies, 23.1-23.8 
modified for partially corotating plasma, 21.13 
ionization energy of infalling gas, 21.5, fig. 21.5.1, table 21.5.1 
ionization of infalling gas 
by interaction with plasma, 15.3, 21.4 
complete ionization 
theory 23.2, fig. 23.2.1 
giant planets, 23.2, fig. 23.2.2, table 23.2.1 
outer Saturnian satellites, 23.2 
partial ionization, 23.3, fig. 23.3.1 
ionization potential 
of cosmically important elements as a function of gravitational potential energy, 21.5, 
fig. 21.5.1, table 21.5.1 
ionization velocity of infalling gas, 21.4 (see also critical velocity phenomenon) 
iron 
in cores of Earth, Mercury, Pluto and Venus, 20.5 
irradiation effects 
during hetegonic era, 5.5, 16.8, 22.9, 25.5 
irradiation record in meteorites, 16.8, 22.9, fig. 22.9.1 
irregular groups, defined, table 2.5.1 
isochronism of spins 
defined, 9.7, fig. 9.7.1, table 9.7.1 
and accretional processes, 13.3 
and accretional theory, 13.4 
and stability of the solar system, 10.4 
Janus (see Saturnian satellite system) 
jet streams 
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defined, 1.4 
general characteristics, 4.3, 6.9, 11.5, 12.6 
and accretional processes 
brief summary, 21.4, fig. 21.4.1, 22.5 
density waves, 14.3, 14.8, 19.3 
nongravitational accretion, 7.4, 11.5, 12.3, 22.7 
resolution of objections.to accretional formation of bodies, 11.1, 12.2 
simple model, 12.2-12.6 
limitations of model, 12.7 
spin acquisition by accreting body, 13.1-13.6 
physical properties simple toroid model, 12.2 
composition 

deduced from meteorite composition, 22.6 
of distinct streams, 22.9 
gas content, 22.6 

density 
defined, 12.3 
and embryo growth, 12.6, fig. 12.6.1 
numerical values, 12.8, table 12.8.1 
for planetary jet streams, table 12.8.1 
volume 
simple model, 12.2 
for planetary jet streams, table 12.8.1 
evolution of jet streams 
summary, 6.9 
energy balance, 12.5 
mass 
assimilation of mass, 6.9, fig. 6.9.1, 12.4 
compared to Laplacian rings and Saturnian rings, 6.8 
orbital characteristics 
contraction of jet stream, 6.8-6.9, 12.5-12.6, fig. 12.6.1 
dispersion of jet stream, 6.8-6.9 
Kepler motion, 6.1-6.10 
negative diffusion, 6.6, fig. 6.6.1, 6.8-6.9 
profile of a jet stream, 4.3, 12.7, 11.5 
types 
list, 6.10 
asteroidal 
defined, 4.3 
general characteristics, 14.7 
evolutionary processes in, 14.7 
focusing of, 4.3 
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Flora A jet stream, 4.3, fig. 4.3.6 
cometary, 14.7 
hetegonic 
compared to asteroidal, 12.7, 12.2 
and formation of planets and satellites, 12 
meteor streams, 14.2 
transplanetary, 19.3 
Jovian satellite system (see also satellite systems) 
comparative study with other satellite systems, 21.3 
orbital motion 
orbital parameters, table 2.1.2 
angular momentum, fig. 2.3.2 
resonances 
Io-Ganymede-Europa, 8.5 
retrograde satellites 
capture theory, 24.4 
relationship with Trojan asteroids, 8.5 
physical properties 
physical properties, tables 2.1.2-2.1.3 
composition and primary's radiation, 20.7 
density, average, table 20.5.1, fig. 20.7.1 
density, distributed, table 2.1.2, fig. 2.5.2 
mass distribution, 2.4-2.5, fig. 2.5.2, 23.6-23.7 
tidal deformation table 9.2.1 
Jupiter (see also planets) 
orbital motion 
orbital parameters, table 2.1.1 
resonances 
Hilda asteroids, 8.5-8.6, fig. 8.5.4, table 8.5.1 
Thule, 8.5, table 8.5.1, 8.6 
Trojan asteroids, 8.5, fig. 8.5.3, table 8.5.1 
physical properties, table 2.1.1 
composition, 20.5, table 20.5.1, fig. 20.5.2, fig. 20.7.1 
excess energy emission, 20.5 
inclination of spin axis, 13.6 
temperature profile, 12.10-12.11, fig. 12.11.1 
tidal braking of spin by satellites, 9.4 
tidal deformations, table 9.2.1 
satellites (see Jovian satellite system) 
Jupiter 6-12 (see Jovian satellite system) 
Jupiter capture of long-period bodies to form short-period bodies 
comets, 14.5, 19.5-19.7, fig. 19.8.1 
meteoroids, 19.5, 19.7, fig. 19.8.2 
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Kepler motion 
of asteroids, 5.2, fig. 5.1.1 
guiding center approximation, 3.1-3.7, fig. 3.3.1 
of interacting bodies 6.1-6.10 
and jet streams, 6.1-6.10 
transition from partial corotation, 17.5 

Kepler motion, collision perturbed 
describing mutual interaction of bodies in Kepler orbits, 5.1-5.2, 5.1.1, 6.3, 6.6-6.9 
of grains condensed from partially corotating plasma, 18.2 
in Saturnian rings, 18.5 
kinematic image of condensing plasma 
general explanation, 18.5 
in asteroid belt, 18.8 
in Saturnian rings, 18.5-18.6 
Kirkwood gaps 
defined, 4.3 
collision effects, 8.6 
in contrast to captured asteroids at resonance points of Jupiter, 4.4 
and resonance effects, 4.3, fig. 4.3.3, 8.5-8.6, 18.6, fig. 18.6.2 
Kordylevsky clouds 
of small bodies in Moon's orbit, 4.5 
Lagrangian points 
bodies captured in 
Trojans around Jupiter, 4.5 
small bodies around the Moon, 4.5 
measure of gravitational dominance, 11.2, fig. 11.2.1, table 11.2.1 
Laplacian-type models of solar system evolution 
general description, 16.2 
inadequacies 
chemical composition of solar system, 20.1, 20.6-20.7 
conservation of angular momentum, 16.2 
gravitational collapse, 11.2, 21.1 
mass distribution in solar system, 2.4-2.5, 21.1 
support of cloud against central body's gravitation, 16.4 
and Titius-Bode's law, 2.4 
Leonid meteor stream, 14.4 
libration 
deviation from exact resonance, 8.4 
as a measure of resonance stability, 8.4 
libration angle 
defined, 8.4 
libration point (see Lagrangian points) 

http://history.nasa.gov/SP-345/index.htm (25 of 55) [6/9/2004 12:28:30 PM]



index

(M,a) diagram 
distribution of asteroid mass, 4.3, fig. 4.3.4 
and hetegonic effects, 18.8 fig. 18.8.1 
magnesium silicates (see silicates) 
magnetic dipole moment 
required for transfer of angular momentum from primary to second 
body 
derived, 16.3 
tabulated, table 16.3.1 
magnetic effects (see also hydromagnetic effects) 
ionization and arrest of infalling gas, 21.2-21.5, 21.11, figs. 21.11-21.11.2, 23.1-23.4 
magnetic clustering of grains, 12.3, 22.7, fig. 22.7.1 
magnetic field 
galactic, 19.2 
of primary body during formation of secondary bodies and transfer of angular 
momentum 
assumptions, 16.1 
supportive evidence 
observational, 16.1 
theoretical, 16.1 
values, 16.3 
solar magnetic field in hetegonic era, 25.2 
transplanetary magnetic field, 19.2 
magnetic field lines 
and motion of plasma, 15.3, fig. 15.3.4 
magnetization, remanent (see remanent magnetization) 
magnetization of grains, 12.3, 22.7, fig. 22.7.1 
magnetization of a plasma 
poloidal versus toroidal, 15.3, fig. 15.3.3 
magnetograms, solar (see solar magnetograms) 
magnetohydrodynamics (see hydromagnetic effects, hydromagnetic parameter) 
magnetohydrodynamics, applications to 
emplacement of matter around primary, 16.7, 17.1-17.2, 23.1-23.3 
evolutionary theories 1.4 (see also evolutionary stages) 
space science, 1 S.1, table 15.1.1 
transfer of angular momentum from primary to secondary, 16.1-16.6 
magnetosphere 
electrostatic double layers 
mechanism of establishing, 16.3 
theoretical/observational review cited, 16.3 
electric field parallel to magnetic field, 16.3, fig. 16.3.1 
and information on hetegonic plasmas, 15.4 
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review of experimental work cited, 15.3 
magnitude, visual 
of asteroids, 4.3, table 4.3.1, table 9.7.1 
main belt asteroids 
orbital parameters, 4.3, figs. 4.3.1-4.3.3, fig. 4.4.1 
resonances, 4.3, 8.5-8.6 
structure 
compared to Saturnian rings, 18.6, 18.8 
hetegonic effects, 18.8 
2/3 fall-down ratio, 18.8, fig. 18.8.1 
Kirkwood gaps, 4.3, 8.5-8.6, 18.6, fig. 18.6.2 
stability of structure, 10.3 
mantle (see Earth, composition) 
many body problem in celestial mechanics, 5.2 
Mars (see also planets) 
orbital parameters, table 2.1.1 
physical properties, table 2.1.1 
mass, radius, density, table 20.5.1 
composition, 20.5, figs. 20.5.1, 20.7.1 
spin 
tidal braking by satellites, 9.4 
inclination of spin axis, 13.6 
temperature profile, 12.10-12.11, fig. 12.11.1 
satellites (see Martian satellite system) 
Martian satellite system (see also satellite systems) 
orbital parameters, table 2.1.2 
physical properties, table 2.1.2 
and bands of secondary bodies, 21.2 
surface features of Phobos, fig. 20.4.1 
mascons on the Moon, 24.6 
mass 
asteroids, 4.1, table 4.3.1, figs. 4.3.4, 5.1.1 
comets, 4.1, fig. 5.1.1 
in jet streams, 12.4, 12.6, fig. 12.6.1 
planets, table 2.1.1, fig. 5.1.1, table 20.5.1 
satellites, table 2.1.2-2.1.3, fig. 5.1.1, table 20.5.1 
solar, for hetegonic Sun, 25.2 
mass distribution in solar system (see also density, distributed; composition of celestial 
bodies) 
basic model, 21.11, figs. 21.11.1-21.11.2 
bands of secondary bodies 
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introduced, 21.11, fig. 21.2.1 
as function of mass of primary, 21.2, fig. 21.2.1 
as function of gravitational potential, 21.2, fig. 21.2.1 
and degree of ionization of infalling gas 
theory, 23.2 23.3, figs. 23.2.1-23.3.1 
observations, 23.2, fig. 23.2.2, table 23.2.1, 23.6-23.8 
groups of secondary bodies 
comparative study, 21.3 
mass distribution within groups, 23.1-23.8 
possible explanation of mass distribution 
Laplacian disc, 21.1 
ejection of mass from primary, 21.1 
infall of mass to system, 21.1 
present-day distribution 
planetary system, 2.4 2.5, fig. 2.5.1, 23.6 
satellite systems, 2.4 2.5, figs. 2.5.2-2.5.4, 23.6 
spacing among celestial bodies 
and critical velocity phenomena, 21.2-21.5, 21.11, figs. 21.11.1-21.11.2 
mass emplacement (see emplacement of matter) 
mass infall (see infall of matter) 
mass spectra, 7.2 
medium, interplanetary (see interplanetary medium) 
melting 
and accretional processes, 12.12-12.13 
of embryo by impacting matter, 12.12-12.13 
and formation of Earth's core, 20.5 
in meteorites, 11.8, 20.4, 22.4, 22.6 
Mercury (see also planets) 

orbital motion 

orbital parameters' table 2.1.1 
spin-orbit resonance, 8.8 

physical properties 
tabulated, table 2.1.1, table 20.5.1 
composition, 20.5, fig. 20.5.1, fig. 20.7.1 
spin axis inclination and accretional processes, 13.6 
temperature profile and accretional processes, 12.10-12-11, fig.12.11.1 
tidal deformation, table 9.2.1 
satellites, absence of, 21.2 
meteor streams 
definition, 4.6 
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density, 14.3 
orbital parameters, fig. 4.6.1 
compared to jet streams, 14.2 
formation and genetic relationships 
accretional mechanism, 14.3 
and comets, 4.6, 14.2-14.5,19.8 

hetegonic model, 19.8, fig. 19.8.2, table 19.8.1 
traditional view, 19.8, fig. 19.8.1 
in transplanetary space, 19.3, 19.6, fig. 19.8.2 

meteorites 
definition, 4.1 
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Giacobinid meteors, 22.2 
solar photosphere, 20.6, fig. 20.6.2 
constituents 
crystals, fig. 7.1.1, 22.3-22.4, fig. 22.3.1, 22.9 
diamond, 11.8 
hydrated minerals, 11.8 
oxidized minerals, 11.8 
noble gas content, 26.2 
density, 14.2 
as evidence of 
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heating effects, 11.8, 22.4, 22.6 
nongravitational accretion, 11.5 
representative composition of planetesimals forming the Earth, 26.2 
selection effects, 22.3 
shock compaction and melting, 20.4 
texture, 14.2, 22.3, fig. 22.3.1 
interpretation of data 
general discussion, 22.10 
introduction of error due to assumption of 
equilibrium condensation, 22.1 
exploded planet hypothesis, 22.1 
Laplacian disc, 22.1 
irradiation record 
compared to lunar surface irradiation, 22.9 
cosmic ray tracks, fig. 22.9.1 
hetegonic irradiation, 22.9 
orbital history 
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as fragments of comets or near-Earth asteroids, 22.2 
physical history (see also meteoroids) 
summary, 22.8, fig. 22.8.1 
age determinations, 22.9 
as deduced from composition, 22.6 
as fragments of 

asteroids, 22.2 
comets, 22.2 
exploded planet, 11.8, 22.1, 26.2 
precursor bodies, 22.2, 22.4 

irradiation record, 22.9 
thermal history, 11.8, 22.4 
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definition, 4.1, 4.6 
formation and genetic relationships 
hetegonic model, 19.8, fig. 19.8.2, table 19.8.1 
origin from exploded planet, 11.8, 22.1, 26.2 
as primeval matter in the solar system, 19.5 
between short- and long-period meteoroids, 19.7, fig. 19.8.2 
traditional model, 19.8, fig. 19.8.1 
in transplanetary space, 19.6, fig. 19.8.2 
meteors 

definition, 4.1 
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definition, 4.6 
formation and genetic relationships, 19.3 
micrometeoroids (see also interplanetary dust; grains) 
detection by Jupiter 10 flyby, 4.1, 4.3 
forces governing orbital motion, 5.3-5.6, fig. 5.1.1 
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models of solar system evolution 
model development 
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hetegonic model (see also evolutionary stages) 
brief synopsis, 16.6, fig. 16.6.1 
characteristics of hetegonic plasma, 16.7 
emplacement and ionization of infalling matter 
critical velocity phenomenon, 21.2-21.5, 21.11 -21.13, figs. 21.2.1-21.2.2 
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summary of preaccretional stages, fig. 16.7.1 
partial corotation, 17.1-17.5 
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accretion, chs. 11-13 
summary of accretional stages, fig. 18.10.1, 19.8, 19.8.2, table 19.8.1 

Laplacian model (see also Laplacian-type models) 
general description, 16.2 
inadequacies, 2.4, 11.2, 16.2, 16.4, 20.1, 20.6-20.7, 21.1 
planetesimal accretion (see also accretion, jet streams, grains) 
introduction, 11.1-11.3 
in jet streams, brief summary, 22.5 
required properties of model, 11.7, 15.5 
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speculative element in models 
in plasma physics and astrophysics, 15.3, fig. 15.4.2 
introduced through postulates about the early Sun, 16. fig. 16.9.1 
reduction of speculative element, 1.1, 1.5 
modified Roche limit (see Roche limit, modified) 
Moon 
orbital parameters, table 2.1.3 
orbital evolution 
brief summary, 24.9 
evidence of evolution from 
lunar mare and basins, 24.6 
remanent magnetization of lunar rocks, 24.5 
tidal effects, 24.5, fig. 24.5.1 
origin theories 
method of choice among theories, 24.1 
literature review cited, 24.1 
accretion as satellite formation theory, 24.1 
capture theory, 24.1, 24.4-24.5, figs. 24.4.1-24.4.2 
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lunar remanent magnetization, 24.5 
variations of capture theory 
close approach to Earth, 24.5 
resonance modified orbit, 24.5 
physical properties, table 2.1.3 
composition 
brief summary, 20.5, 24.9 
crust, 24.7 
loss of volatiles, 24.7 
overlap of A and B clouds affecting composition, 24.8 
surface features, 26.5 
inclination of spin axis, 13.6 
surface temperature, 24.7 
temperature profile, processes affecting 
accretion of planetesimals, 12.10-12.11, fig. 12.11.1 
accretional hot spot front, 24.7 
radiogenic heating of interior, 24.7 
tidal deformation, table 9.2.1 
motion, orbital (see orbital motion) 
(N,a) diagram, fig. 4.3.3 
orbital distribution of asteroids, 4.3 
near-commensurability (see commensurability, near-) 
nebula, Laplacian (see Laplacian-type models) 
nebula, primeval (see Laplacian-type models) 
nebulae from which planets and satellites formed (see nebulae, hetegonic) 
nebulae, hetegonic (see also clouds (A, B, C, D)) 
defined, 16.7 
general characteristics, 16.7 
condensation of grains in nebulae, 16.5 (see also condensation) 
heating during transfer of angular momentum from primary to secondary, 17.6 
spacing between nebulae, 18.10 
support by magnetic field of primary body, 16.4 
negative diffusion 
defined, 6.6, fig. 6.6.1 
evidence from meteorites, 22.6 
and formation of comets, 14.2 
simple model, 6.7, fig. 6.7.1 
neon, critical velocity of, 21.8 
Neptune 
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resonance with Pluto, 8.5, fig. 8.5.1, table 8.5.1 
physical properties, table 2.1.1 
mass, radius, density, table 20.5.1 
composition, 20.5, figs. 20.5.2, 20.7.1 
spin 
inclination of spin axis, 13.6 
tidal braking by satellites, 9.4 
temperature profile, 12.10-12.11, fig. 12.11.1 
tidal deformation, table 9.2.1 
satellites (see Neptunian satellite system) 
Neptunian satellite system (see also satellite systems; Triton) 
absence of regular system 
general discussion, 21.2, 24.3 
orbital parameters, tables 2.1.2-2.1.3, fig. 24.4.1 
physical properties, tables 2.1.2-2.1.3 
mass distribution, 2.4-2.5 
Pluto as former satellite, 8.5 
Triton as captured satellite, 9.4, 24.4 
Nereid (see Neptunian satellite system) 
nickel 
high content in rocks from upper mantle, 26.3, 20.5 
noble gas content in meteorites compared to Earth's atmosphere, 26.2 
nodes 
described by guiding center approximation, 3.3 
precession of, 3.3-3.6 
nongravitational accretion (see accretion, nongravitational) 
normal satellites (see Earth, satellites) 
normalized distances 
defined, 23.6 
tabulated for planets and satellites, table 23.6.1 
and information on the mass of the hetegonic Sun, 25.2 
Oberon (see Uranian satellite system) 
oblateness (see also tides) 

of bodies due to tidal effects, 9.2, table 9.2.1 
influence on motion of secondary bodies, 3.6 

ocean, formation theories 
summary, 26.7 
accretional phenomena 
introduction, 26.1 
Earth's accretion 
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as affected by ocean and atmosphere, 26.4 
planetesimals as source of ocean 
hydroxyl content in meteorites, 26.2 
noble gas content in meteorites, 26.2 
reactive volatiles, 26.2 
release of volatiles from impacting planetesimals, 26.3 
retention of volatiles 
in ocean, 26.4, fig. 26.3.1 
in Earth's crust, 26.5 
tidal effects due to Moon, 26.6 
orbital angular momentum (see angular momentum, orbital) 
orbital angular momentum, specific 

defined, 2.1 
orbital angular momentum, total 

defined, 2.1 
orbital distance, ratio of 
defined, 2.2 
and groups of secondary bodies, 2.5, table 2.5.1, 11.7, 18.10 
and hetegonic processes 
accretion, 11.7, 18.10 
condensation, 17.5, 18.9 
ionization of infalling gas, 21.4, 23.6 
normalized distances, 23.6 
of planets, table 2.1.1 
of satellites, table 2.1.2 
and Titius-Bode's law, 2.2, 2.6 
and two-thirds law, 17.5, 18.9 
orbital motion (see also semimajor axis; pericenter; nodes; eccentricity; inclination; 
orbital velocity; period) 

general treatments 
described by celestial mechanics, 5.1, fig. 5.1.1 
circular motion, 3.2 

with epicycles, 3.3, fig. 3.3.1 
motion of guiding center, 3.3 
with superimposed radial and axial oscillations, 3.3-3.7 

guiding center approximation of orbital motion 
definition, 3.1 
motivation, 3.1 
and apparent attraction, 6.4-6.5 
and eccentricity, inclination, pericenter and node, 3.3 
of gravitationally unperturbed motion, 3.4 
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in perturbed gravitational field, 3.6-3.7 

Kepler motion as motion of guiding center perturbed by oscillations, 3.1-
3.7, fig. 3.3.1 
plasma physics formalism, 5.1, 5.3-5.5 
"proper elements", 4.3 

governing forces and effects 
summary, 5.6, fig. 5.1.1 
accretional processes, 11.7, 18.11 
collision effects, 6.3, 6.6-6.9 

negative diffusion, 6.6, fig. 6.6.1 
inelastic collisions, 6.6, fig. 6.6.1 
and Kirkwood gaps, 8.6 
supportive evidence, 22.6 

condensation, 17.5, fig. 17.5.1 
hydromagnetic effects 

ionization and arrest of infalling gas, 21.4 
transfer of angular momentum from primary to secondary body, 16.3 

interplanetary medium, 6.2 
limit between gravitational and electromagnetic dominance, 5.4 
partial corotation 

introduction, 17.1 
compared to Kepler motion, table 17.3.1 
transition from partial corotation to Kepler motion, 17.5 

stability of orbital motion 
introduction, 10.1 
and asteroid belt, 10.3 
and resonance structures, 10.2 
and Saturnian rings, 10.3 

orbital motion of populations of bodies 
almost circular orbits (see planets; asteroids; satellite systems) 
almost parabolic orbits (see comets, long-period; meteor streams; meteoroids) 
elliptical orbits (see Apollo-Amor asteroids; comets, short-period; meteoroids) 
large bodies (see planets; satellites) 
small bodies (see small bodies) 
orbital motion of specific bodies (see asteroids; comets; meteoroids; planets; satellite 
systems) 
orbital period (see period, orbital) 
orbital velocity 
defined, 2.1 
changes due to transfer of angular momentum from primary to secondary bodies, 16.1-
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of satellites, tables 2.1.2-2.1.3 
oxides, refractory 
ratios of refractory oxides in meteorites, 22.9 
oxides, transition metal 
and gravitational differentiation, 12.13 
oxygen 
abundance in Earth, 20.5 
critical velocity of, 21.8 
oxidized minerals in meteorites, 11.8 
parabolic, almost-, orbits/bodies (see comets, long-period; meteor streams; 
meteoroids) 
parent bodies of meteorites (see precursor bodies) 
partial corotation 
definition, 17.1 
characteristic orbital velocity derived, 17.2 
energy considerations, 17.3 
equilibrium conditions derived, 17.1-17.2 
and Kepler motion 
comparison, 17.3 
transition between partial corotation and Kepler motion, 17.5 
model for transfer of angular momentum from primary to secondary bodies 
derivation, 16.3, fig. 16.3.1 
modifications, 16.3-16.5 
summary, 16.7 
observational verification 
asteroidal belt, 18.8 
Saturnian rings, 18.6 
summary, 18.9 
and plasma in superprominences, 17.4 
pericenter 
described by guiding center approximation, 3.3 
precession, 3.3-3.6 
pericentric frictional heating mechanism (see also heating effects), 11.8, 21.12, 22.4 
period, orbital (see also orbital motion) 
asteroids, table 4.3.1 
planets, table 2.1.1 
satellites, tables 2.1.2-2.1.3 
source of data for asteroids and comets cited, 4.1 
period, spin (see also spin) 
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accretion processes, 13.6 
resonances, 8.8 
tidal braking, 9.1-9.6 
isochronism of spins, 9.7, fig. 9.7.1, table 9.7.1, 10.4, 13.3-13.4 
spin period for specific bodies 
asteroids, table 4.3.1, table 9.7.1, fig. 9.7.1 
Earth, prior to capture of Moon, 24.3 
planets, 2.1, table 2.1.1 
Sun, hetegonic, 16.2, 25.4, 25.6 
Venus, 8.8, 13.6 
Perseid meteor stream 
association with comet P/Swift-Tuttle, 14.4 
Perseid meteors 
composition compared to that of chondritic meteorites, 22.2 
Phobos (see Martian satellite system) 
Phoebe (see Saturnian satellite system) 
photosphere 
composition compared to that of meteorites, 20.6, fig. 20.6.2 
as example of cosmic plasma, 15.3 
reliability of data, 20.6 
physical properties of bodies (see asteroids; comets; meteoroids; planets; satellites) 
pinch effects in plasmas, 15.3 
planetesimal (see also embryo; fluffy aggregates) 
defined, 1.4 
planetesimal accretion (see also accretion, formation of embryo; models of solar 
system evolution) 
defined, 12.1 
applied to formation of ocean and Earth's atmosphere, 26.2-26.4 
history of concept 
general discussion, 11.3 
literature survey cited, 11.3 
supportive evidence 
cratered surfaces of celestial bodies, 11.3, fig. 20.4.1, 24.6 
meteorites, 11.3 
spin acquisition theory, 13.3-13.4 
spin isochronism, 11.3 
planets (see also Mercury, Venus; Earth; Moon; Mars; Jupiter; Saturn; Uranus; Neptune; 
Triton; Pluto) 
comparative studies (see comparative studies of planets/satellites) 
formation and genetic relationships (see also evolutionary stages) 
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general treatment, 12.3-12.6 
time required for accretion, 12.8-12.9, table 12.8.1, fig. 12.9.1 
contraction of uniform disc, 21.1 (see also Laplacian-type models) 
effects on evolution of the Sun, 25.6 
gravitational collapse, 11.2, fig. 17.2.1, table 11.2.1 
hetegonic model, 19.8, fig. 19.8.2, table 19.8.1 
mass ejection from Sun, 21.1 
mass infall toward the Sun, 21.1 (see also emplacement of matter) 
traditional view, 19.8, fig. 19.8.1 
groups of planets, 2.5, table 2.5.1, 23.5-23.6 (see also groups of secondary bodies) 
orbital motion 
forces governing, 5.1 5.2, fig. 5.1.1 
orbital parameters, table 2.1.1 
resonances, 8.5, table 8.5.1, 8.8 
physical properties, table 2.1.1 
composition, 20.5, table 20.5.1, fig. 20.5.1, fig. 20.7.1 
mass distribution in planetary system, 2.4-2.5, 23.6 
spin 
inclination of spin axis, 13.6 
spin-orbit resonances, 8.8 
tidal braking by satellites, 9.4 
temperature profile, 12.10-12.11, fig. 12.11.1 
tidal deformation, table 9.2.1 
planets, exploded (see exploded planet hypothesis) 
planetology, comparative (see comparative studies of planets/satellites) 
plasma, dusty (see also plasma, hetegonic) 
electromagnetic effects, 5.3, fig. 5.1.1 
plasma, hetegonic 
general characteristics, 16.7 
constituents, 16.7 
densities, 16.5 
heating/ionizing by currents, 15.1, 17.6, 23.1 23.4 
processes active during hetegonic era (see also evolutionary stages) 
brief synopsis, fig. 16.6.1, fig. 16.7.1 
condensation (see condensation; kinematic image of condensing plasma) 
interaction with neutral gas (see critical velocity phenomenon) 
emplacement of matter (see emplacement of matter) 
partial corotation (see partial corotation) 
transfer of angular momentum from primary to secondary bodies (see angular 
momentum, transfer) 

http://history.nasa.gov/SP-345/index.htm (38 of 55) [6/9/2004 12:28:31 PM]



index
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definition, 15.3 
general characteristics, table 15.3.1 
theoretical treatment, 15.3 
plasma, real 
general characteristics, 15.3, table 15.3.1 
summary, 15.3, table 15.3.1 
electrostatic double layers 
experimental review cited, 15.3 
properties, 15.3, fig. 15.3.1 
filaments, pinch effect, 15.3, fig. 15.3.3 
instabilities, 15.3 
ionization 
and critical velocity phenomenon, 15.3 
degree of ionization, 15.3 
magnetization 
motion with respect to magnetic field lines, 15.3, fig. 15.3.4 
relation of poloidal and toroidal fields, 15.3, fig. 15.3.3 
low density regions, 15.3 
theoretical treatment of, 15.3 
plasma beam experiment on critical velocity, 21.8, figs. 21.8.6-21.8.8 
plasma capture of transplanetary dust in hetegonic nebulae, 1.4 
plasma cloud (see bands of secondary bodies; emplacement of matter; clouds (A, B, C, 
D)) 
plasma physics 
application to 
evolutionary theory, 1.4, 15.1, table 15.1.1, 15.6 
space science, 1.4, 15.1, table 15.1.1, 15.2 
studies of small bodies, 4.2, 5.2 
experimental 
Birkeland experiments, 15.2 
configuration and process simulation, 15.3 
relationship with theoretical plasma physics, 15.2 
review of experimental work on the terrestrial magnetosphere cited, 15.3 
theoretical 
Chapman-Ferraro theory, 15.2 
Chapman-Vestine theory, 15.2 
and kinetic theory of nonionized gases, 15.2 
and space missions, 15.2 
and thermonuclear reactors, 15.2 

http://history.nasa.gov/SP-345/index.htm (39 of 55) [6/9/2004 12:28:31 PM]



index

treatment of pseudo plasma, 15.3, table 15.3.1 
plasma physics formalism 
treating orbital motion, 5.2 
treating many-body problem, 5.2 
plasma surrounding primary during formation of secondaries (see plasma,hetegonic) 
platinum metals 
high content in rocks from upper mantle, 26.3 
Pluto (see also planets) 
orbital motion 
orbital parameters, table 2.1.1 
resonance with Neptune, 8.5, fig. 8.5.1, table 8.5.1 
as former satellite of Neptune, 8.5 
physical properties, table 2.1.1 
composition, 20.5, table 20.5.1, fig. 20.5.2, fig. 20.7.1 
inclination of spin axis, 13.6 
mass, radius, density, table 20.5.1 
satellites 
absence of, 21.2 
plutonium 
and gravitative differentiation, 12.13 
polarization of grains in space (see electrostatic polarization) 
populations of bodies (see orbital motion of populations of bodies) 
potassium 
and gravitative differentiation, 12.13 
and loss from the Moon, 24.7 
K/Ar ratios in meteorites, 22.9 
potential, ionization (see ionization potential) 
Poynting-Robertson effect 
and orbital motion of interplanetary dust, 5.5, fig. 5.1.1 
and resonance locking, 5.5 
precursor bodies (see also meteoroids, formation) 
defined, 11.8 
accretion history 
in jet stream environment, 22.5 
nongravitational accretion, 22.7 
electrostatic clustering, 22.7 
magnetostatic clustering, 22.7, fig. 22.7.1 
vapor condensation bonding, 22.7 
summary, 22.8, fig. 22.8.1 
physical history 
size limit, 22.4 
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precursor material of celestial bodies and differentiation effects, 20.3 
pressure, radiation (see radiation pressure) 
primary body, properties during formation of secondary bodies 
magnetic field, 16.1, 16.3, table 16.3.1 
mass 
and mass of satellite systems, 24.3, fig. 24.3.1 
radiation 
and composition of secondary bodies, 20.7 
of early Sun, 25.5 
spin 
and formation of secondary bodies, 23.1-23.10 
spin period and number of secondaries formed, 24.3, fig. 24.3.2 
profile of a jet stream (see also jet stream) 
defined, 4.3 
asteroidal jet stream profile compared to hetegonic jet streams, 12.7 
of Flora A, fig. 4.3.6 
profiles, thermal (see temperature, profile) 
prograde satellites (see also satellite systems) 
listed, table 2.1.2 
orbital characteristics, table 2.1.2 
physical properties, table 2.1.2 
prominences, solar (see also superprominences) 
and information on hetegonic plasmas, 15.4 
proper elements of orbital motion 
defined, 4.3 
and Hirayama families of asteroids, 4.3, fig. 4.3.5, table 4.3.2 
periodic variation, 4.3, table 4.3.2 
q-ratio (see orbital distance, ratio of) 
radial distance ratios (see orbital distance, ratio of) 
radiation, corpuscular (see also solar gale, solar wind) 
acceleration of particles in hetegonic superprominences, 16.8 
radiation, hetegonic 
as recorded in meteorites, 22.9, fig. 22.9.1 
during hetegonic era, 16.8, 5.5 
radiation effects 

effect on condensation processes, 20.7, 25.5 
in meteorites, 22.9, fig. 22.9.1 
on orbital motion, 5.5, fig. 5.1.1 

radiation pressure 
effect on motion of interplanetary dust, 5.5, fig. 5.1.1 
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of hetegonic Sun, 25.6 
planets, table 2.1.1 
satellites, tables 2.1.2-2.1.3 

rare earth elements 
and gravitative differentiation, 12.13 

reactive volatiles 
in crust and mantle rocks, 26.5 
in Earth's planetesimals, 26.2 

regular groups 
definition, table 2.5.1 

remanent magnetization 
in lunar rocks and orbital evolution of the Moon, 24.5 
in meteorites, 16.1 

reservoirs, jet stream (see meteorites, composition) 
resistive medium, 6.2 
resonance 

defined, 8.1 
general discussion, 8.1 
mechanisms for establishing resonanc 

hetegonic effects, 8.1 
tidal effects, 8.1 

simple models 
comparison of models, 8.3 
pendulum, 8.2, fig. 8.2.1 
primary with two satellites, 8.3, 

types 
near -commensurabilities 

deviation from exact resonance, 8.4 
transition to near-commensurability from resonance, 8.9 

orbit-orbit resonance 
general characteristics, 8.1, 8.5 
Dione-Enceladus, 8.5, fig. 8.5.6, table 8.5.1 
Earth-Toro, 8.5, fig. 8.5.2, table 8.5.1 
Hildas-Jupiter, 8.5, fig. 8.5.4, table 8.5.1, 8.6 
Io-Ganymede-Europa, 8.5 
Pluto-Neptune, 8.5, fig. 8.5.1, table 8.5.1 
Tethys-Mimas, 8.5, table 8.5.1 
Thule-Jupiter, 8.5, table 8.5.1, 8.6 
Titan-Hyperion, 8.5, fig. 8.5.5, table 8.5.1 
Trojans-Jupiter, 4.5, 8.5, fig. 8.5.3, table 8.5.1 
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examples, table 8.1.1, 8.8 

resonance, broken 
and near-commensurabilities, 8.9 

resonance capture (see resonance, mechanisms for establishing) 
resonance effects 

accretion processes 
possible present-day examples, 11.6 

and Kirkwood gaps, 4.3, 8.5, 8.6 
compared to Saturnian rings, 18.6, figs. 18.6.1-18.6.2 

and Poynting-Robertson effect, 5.5 
and Saturnian rings, 8.7 
and stability of orbits 

general discussion, 10.2 
tidal effects 

Mercury, 9.5 
satellites, 8.8, 9.6 
Venus, 9.5 

resonance locking (see resonance) 
resonance, near-exact (see commensurabilities, near-) 
retrograde satellites 

defined, 2.3 
and near-commensurabilities, 8.9 
orbital parameters, table 2.1.3 

radial distances, fig. 24.4.1 
inclination of orbit, 24.4.1, fig. 24.4.1 

physical properties, table 2.1.3 
theory of retrograde satellite capture, 24.4 

Rhea (see Saturnian satellite system) 
rings, Saturnian (see Saturnian rings) 
Roche limit 

defined, 18.3 
effect in Saturnian rings, 18.3 

Roche limit, mod)fied 
defined, 18.3 
effect in Saturnian rings, 18.3-18.4 

rotation, differential, of Sun (see Sun, hetegonic) 
rubidium 

in lunar rocks, 24.7 
Rb87/Sr87 ratios in meteorites, 22.9 

runaway accretion (see accretion, runaway) 
sand bank 
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as cometary nucleus, 14.3 
satellite systems (see also Jovian, Martian, Neptunian, Saturnian, Uranian satellite 
systems; Earth, satellites) 

comparative studies (see comparative studies of planets/satellites) 
formation and genetic relationships 

alternative explanations 
infall of mass to planet (see also emplacement of matter), 21.1 
ejection of mass from planet, 21.1 
contraction of uniform disc (see also Laplacian-type models), 21.1 
gravitational collapse, 11.2, fig. 11.2.1, table 11.2.1 

capture of retrograde satellites, 24.4 
as a function of g.avitational potential energy, 21.12, fig. 21.2.1 
hetegonic model, 19.8, fig. 19.8.2, table 19.8.1 
number of secondaries as a function of primary's period of rotation and 
mass, 23.1-23.7, 24.3, fig. 24.3.2 
spatial limits of formation 

Lagrangian point as outer orbital limit, 11.2, 21.2, fig. 21.2.1 
synchronous orbit and inner orbital limit, 21.2, fig. 21.2.1, 23.9 

theoretical prediction of formation, 23.8 
absence of predicted satellites explained, 23.8-23.9 

traditional view, 19.8, fig. 19.8.1 
groups of satellites within one system 

defined, 2.5 
comparative studies of groups, 21.3 
mass distribution within groups, 21.3 

orbital motion 
forces governing, 5.1 

resonances, 8.5, table 8.5.1, 8.8-8.9 
tidal effects, 9.6 

orbital parameters, tables 2.1.2 2.1.3 
physical properties, tables 2.1.2-2.1.3 

composition, 20.5, table 20.5.1, fig. 20.7.1 
mass distribution, 2.4-2.5, figs. 2.5.2 2.5.4, 23.6, fig. 23.6.1 
mass as a function of primary's mass, 24.3, fig. 24.3.1 
photograph of Phobos, fig. 20.4.1 
tidal deformation, table 9.2.1 

satellites, retrograde (see retrograde satellites) 
satellites, synchronous (see synchronous satellites) 
Saturn 

orbital parameters, table 2.1.1 
physical properties, table 2.1.1 
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composition, 20.5, fig. 20.5.2, table 20.5.1, fig. 20.7.1 
mass, radius, density, table 20.5.1 
spin 

inclination of axis, 13.6 
tidal braking by satellites, 9.4 

temperature profile, 12.10-12.11, fig. 12.11.1 
tidal deformation, table 9.2.1 

satellites (see Saturnian satellite system) 
Saturnian rings 

accretion 
assimilation of condensed grains, 18.5 
collision within rings, 18.5 
inside rings, 18.4 
outside rings, 18.4 

structure 
described, 18.6 
absence of resonance effects, 8.7 
compared to structure of asteroidal main belt, 18.8 
explanatory theories 

hetegonic theory, 18.6, figs. 18.6.3-18.6.4 
resonance theory, 18.6, fig. 18.6.1, 8.7 

stability of structure, 10.3 
tidal effects 

effect of modified Roche limit, 18.3-18.4 
effect of Roche limit, 18.3 

Saturnian satellite system (see also satellite systems; Saturnian rings) 
groups of satellites (see also groups of secondary bodies) 

compared to other groups in same gravitational potential energy band, 
21.3 
introduced, 2.5 
mass distribution within a group, 23.6-23.7 

orbital motion 
angular momentum, 2.4, fig. 2.3.3 
capture of retrograde satellite Phoebe, 24.4 
orbital parameters, tables 2.1.2-2.1.3 
resonances 

Dione-Enceladus, 8.5, fig. 8.5.6, table 8.5.1 
Hyperion-Titan, 8.5, fig. 8.5.5, table 8.5.1 
suggested resonances with rings, 8.7, 18.6, fig. 18.6.1 

physical properties, tables 2.1.2-2.1.3 
density, 20.5, table 20.5.1, fig. 20.7.1 
mass distribution among satellites, 2.4-2.5, fig. 2.5.4, 23.6, fig. 23.6.1 
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second approach (see plasma, real) 
self-gravitation 

and gravitational collapse of a gas cloud, 11.2, 21.1 
semimajor axis (see also orbital motion) 

defined, 2.1 
asteroids, table 4.3.1, 4.3, 4.4, fig. 4.3.3 
planets, table 2.1.1, table 20.5.1 
satellites, tables 2.1.2-2.1.3, table 20.5.1 

silicates 
as components of Earth's core, 20.5 
and gravitative differentiation, 12.13 

size spectra, 7.2 
small bodies (see also asteroids; comets; grains; meteoroids; Saturnian rings) 

classification, 4.1 
general characteristics 

composition 
of fluffy material, 20.4, 22.8, fig. 22.8.1 
effects of shock compaction, 20.4 

spectra 
cross-section, 7.2, table 7.2.1 
mass, 7.2, table 7.2.1 
radius, 7.2, table 7.2.1 
visual magnitude, 7.2, table 7.2.1 

evolution and development of small body populations 
by fragmentation and accretion, 4.1, 7.1, 7.3-7.4, 22.8, fig. 22.8.1 
motivation for studying, 4.1, 18.7, 22.1, 22.10 

orbital motion 
governing forces, 5.1-5.6, fig. 5.1.1 

collisions, 6.3, 18.2, 18.5 
partial corotation, 17.1, 18.2 

orbital parameters, 4.1, 4.3-4.4, table 4.3.1, figs. 4.3.1-4.3.4, 4.6, fig. 
4.6.1 

sodium emission from comets, 22.2 
solar gale 

during hetegonic era, 5.5 
inadequate evidence in radiation records, 16.2, 25.4-25.5 
suggested analogy with T-Tauri phenomena, 16.2 

solar magnetograms 
and solar composition, 20.6 

solar nebulae 
composition compared to that of the solar photosphere, 20.6 
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solar photosphere 
composition as model for "cosmic abundance", 20.1 

solar radiation (see Poynting-Robertson effect; radiation pressure; solar gale; solar 
wind; Sun, hetegonic) 
solar tides (see Sun, tidal deformation) 
solar wind 

braking of solar spin, 16.2 
effect on orbital motion of interplanetary grains, 5.5 
during hetegonic era, 25.5 

source cloud 
defined, 21.4, 21.11 
general characteristics, 21.4, 21.11 
composition compared to that of clouds (A, B, C, D), 21.12 
and hetegonic processes, fig. 16.9.1 
patterns of gas infall from source clouds, 21.12, figs. 21.12.1-21.12.2 
for satellite systems, 21.4, fig. 21.4.1 

spacing of celestial bodies (see bands of secondary bodies; groups of secondary 
bodies) 
spallation products of cosmic rays 

exposure age of meteorites, 22.9 
speculation, reduction of (see models of solar system evolution, speculative element) 
spin (see also isochronism of spins) 

model of acquisition of rotation during accretion, 13.1-13-6 
as a function of 

density, 13.4 
mass, 9.7, fig. 9.7.1, table 9.7.1, 13.3 
size, 13.3 

gravitational accretion, 13.3 
inclination of spin axis, 13.6 
nongravitational accretion, 13.2 

post-accretional changes 
energy dissipation, 9.3 
spin of primary and satellite formation, 1.2, 23.1-23.8 

braking of primary spin during angular momentum transfer to 
secondary body, 16.3, fig. 16.3.1 

tidal effects, 9.1-9.6 
spin, similarity of spin among celestial bodies (see isochronism of spins) 
spin period (see period, spin) 
sporadic meteors (see meteors, sporadic) 
stability of orbits 
introduced, 10.1 
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reconstructing hetegonic processes, 10.5, 18.6, 18.8 
supportive evidence 
asteroid belt, 4.2, 10.2 
isochronism of spins, 10.4 
resonance structures, 10.2 
Saturnian rings, 10.3 
stars, formation of 

by gravitational collapse, 11.2 
by stellesimal accretion, 25.7 

statistical accretion (see accretion, statistical) 
stellesimal accretion, 25.7 
streams (see jet streams; meteor streams) 
strontium 

in lunar rocks, 24.7 
Rb87/Sr97 ratios in meteorites, 22.9 

subvisual asteroids 
forces governing motion, 5.1-5.4, fig. 5.1.1 
influence on accretion in asteroid belt, 4.3, 6.3, 7.1, 7.3, 14.7, 18.2 
mass distribution, 4.1 

sulfides 
and gravitative differentiation, 12.13 

Sun 
characteristics during hetegonic era (see Sun, hetegonic) 
composition inferred from 

solar photospheric abundance data, 20.6 
solar radiation, 20.6 
spectrometric analysis, 20.6, fig. 20.6.1 

tidal deformation due to planets, table 9.2.1 
Sun, hetegonic 

early characteristics of Sun are uncertain, 16.2, 16.9 
evolution 

during deuterium burning phase, 25.6, fig. 25.6.1, fig. 25.6.3 
during planetary formation, 25.6, figs. 25.6.2-25.6.3 
possible formation by accretion, 25.7 

magnetic field as deduced from 
hydromagnetic effects in planetary formation, 25.3 
transfer of angular momentum requirements, 16.1, 16.3, tables 16.3.1 
16.3.2 

mass as inferred from 
normalized distances of the planets, 25.2 
structure of the bands of secondary bodies, 25.2 

radiation 
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corpuscular, 25.5 
thermal, 25.5 

radius 
contraction during deuterium-burning phase, 25.6, fig. 25.6.1, fig. 25.6.3 

spin period (see also angular momentum transfer) 
braking by solar wind, 16.2 

deduced from  values of the planets, 25.4 
differential rotation, 25.4 
changes during angular momentum transfer to Jupiter, 25.6, fig. 25.6.2 
changes during contraction at the end of deuterium-burning phase, 25.6, 
fig. 25.6.1, fig. 25.6.3 

sunspots 
and information about hetegonic plasmas, 15.4, fig. 15 

super corona 
defined, 16.7 

general characteristics, 16.7, fig. 16.6.1 
superprominences (see also plasma, hetegonic) 
defined, 16.6 
general characteristics, 16.7, fig. 16.6.1 
acceleration of particles, 16.8 
effect upon emplacement of matter, 23.2 
and partial corotation of plasma, 17.4 

Swift-Tuttle comet, 14.4 
synchronous planet 

defined, 2.3 
orbital parameters, table 2.1.1 

synchronous radius of orbit 
defined, 23.9 
natural limit of satellite formation, 21.2 

modifications, 23.9 
apparent exceptions to rule, 23.9 
Phobos, 23.9 
Saturnian rings, 23.9 

synchronous satellites 
defined, 2.3, 8.8 
orbital parameters, table 2.1.2 
spin-orbit resonance, 8.8 

T-Tauri stars, 16.2 

 
defined, 23.1 
change due to satellite formation, 23.4 
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chosen for each group of secondary bodies, 23.5 
and mass distribution of secondary bodies formed, 23.6-23.7 
and number of secondary bodies formed, 23.8-23.9, 24.3, fig. 24.3.1 
and spin period of hetegonic Sun, 25.4 

 
defined, 23.5 
for groups of secondary bodies, 23.5, fig. 23.5.1 

tail, cometary, 4.1 
Tellurian satellite system (see Earth, satellites) 
temperature 

of condensing grains and surrounding medium, 15.3, 22.1 
hot spot front, 12.12-12.13 
temperature profile 

accretional effects, 12.10-12.11, fig. 12.11.1, 20.5 
magnetic effects, 20.5 

Temple-Tuttle comet, 14.4 
Tethys (see Saturnian satellite system) 
thermonuclear reactors 

and experiments on critical velocity, 21.8 
and relationship between experimental and theoretical plasma physics, 15.2 

thorium and gravitative differentiation, 12.13 
in lunar surface rocks, 24.7 
U-Th/He ratios in meteorites, 22.9 

Thule (see also asteroids) 
and accretion processes, 11.6 
association with Hilda asteroids, 4.4 
Thule-Jupiter resonance 

general characteristics, 8.5, table 8.5.1 
and Kirkwood gaps, 8.6 

tidal braking 
of central body's spin, 9.3 
of planetary spin by 

satellites, 9.4 
Sun, 9.5 

tidal deformation 
amplitudes of tides, 9.2, table 9.2.1 
displacement of tidal bulge, 9.3, fig.9.3.1 
and energy dissipation, 9.3 
oblateness of bodies, 9.2, table 9.2.1 

tidal effects 
on evolution of ocean and atmosphere, 26.6 
on satellite orbits, 3.6, 9.6 
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and self-gravitation, 18.3 
on spin of celestial bodies, 9.1-9.6 

tides 
amplitude, 9.2, table 9.2.1 
Laplacian theory of terrestrial tides, fig. 9.4.1 
phase relations of terrestrial tides, 9.4, fig. 9.4.1 
producing changes in spin, 9.3-9.6 

time (duration) of infall of matter 
defined, 12.8 
value chosen, 12.10 

time required for embryo growth 
to infinite radius 

defined, 12.3 
and embryo growth, 12.6, fig. 12.6.1 
numerical values for planets, 12.8-12.9, table 12.8.1 

to reach runaway accretion 
defined, 12.6 
and embryo growth, 12.6, fig. 12.6.1 
numerical values for the planets, 12.8-12.9, table 12.8.1 

and resulting temperature profile, 12.10 
time of escape, 2.2 
Titan (see Saturnian satellite system) 
Titania (see Uranian satellite system) 
Titius-Bode's law 

defined, 2.6 
inadequacies, 2.6 

Toro (see also asteroids) 
Earth-Toro resonance, 8.5, fig. 8.5.2, table 8.5.1 

transplanetary condensation (see condensation, transplanetary) 
transplanetary jet streams (see jet streams, types) 
transplanetary magnetic field 

defined, 19.2 
compared to galactic magnetic field, 19.2 

transplanetary region 
defined, 19.2 

trapped infalling gas (see clouds (A, B, C, D)) 
trapped resonance (see resonance) 
trigger element (see element, dominant/controlling) 
Triton (see also Neptunian satellite system) 

orbital motion 
forces governing 5.1-5.2, fig. 5.1.1 
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orbital evolution as a captured satellite, 24.4 
orbital parameters, table 2.1.3, fig. 24.4.1 

physical properties, table 2.1.3 
composition, 20.5, table 20.5.1, fig. 20.5.2 
mass, radius, density, table 20.5.1 
tidal deformation, table 9.2.1 

Trojan asteroids (see also asteroids) 
general discussion, 4.5, 8.5 
and accretion processes, 11.6 

orbiting in Jovian Lagrangian points, 4.5 
as remnants of Jovian accretion, 4.5 

resonance with Jupiter 
general characteristics, 8.5, fig. 8.5.3, table 8.5.1 
relation to retrograde Jovian satellites, 8.5 

semimajor axes, fig. 4.3.3 
two-body problem in celestial mechanics, 5.2 
two-thirds fall-down ratio (see two-thirds law) 
two-thirds law 

defined, 17.5 
derived, 17.5 
and condensation from a corotating plasma, 17.5, fig. 17.5.1 
observational verification, 18.9 

in asteroidal belt, 18.8, fig. 18.8.1 
in Saturnian rings, 18.6, figs. 18.6.3-18.6.4 

Umbriel (see Uranian satellite system) 
uniform disc of primeval matter (see Laplacian-type models) 
Uranian satellite system (see also satellite systems) 

groups of satellites 
defined, 2.5 
comparative studies, 21.3 
mass distribution within groups, 23.6-23.7 

orbital parameters, table 2.1.2 
angular momentum, fig. 2.3.4 

physical properties, table 2.1.2 
compared to other bodies in same gravitational potential energy band, 21.3 
mass distribution, 2.4-2.5, fig. 2.5.3 

uranium 
and gravitative differentiation, 12.13 
in lunar surface rocks, 20.5 
U-Th/He ratios in meteorites, 22.9 
Uranus 

orbital parameters, table 2.1.1 
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physical properties 
composition, 20.5, table 20.5.1, fig. 20.5.2, fig. 20.7.1 
mass, radius, density, table 20.5.1 
spin 

inclination of spin axis, 13.6 
tidal braking by satellites, 9.4 

temperature profile 
and accretional processes, 12.10-12.11, fig. 12.11.1 

satellites (see Uranian satellite system) 
vaporization, selective 
in laboratory experiments, 21.12 
on Moon, 21.12 
of transplanetary condensates in plasma clouds, 21.12 
velocity, collision (see collisions) 
velocity, internal (see also accretion; fragmentation; negative diffusion) 

of jet stream 
defined, 12.2 
influence on accretion and fragmentation, 7.4, 12.3, 22.5 

velocity, ionization (see ionization velocity) 
velocity, relative (see velocity, internal) 
velocity of infall (see infall velocity, critical velocity) 
Venus (see also planets) 

orbital motion 
orbital parameters, table 2.1.1 
spin-orbit resonance, 8.8 

physical properties, table 2.1.1 
composition, 20.5, table 20.5.1, figs. 20.5.1,20.7.1 
spin 

inclination of spin axis, 13.6 
retrograde spin and accretional processes, 13.6 

surface features, 20.5 
temperature profile and accretional processes, 12.10-12.11, 12.11.1 
tidal deformation, table 9.2.1 

satellites 
absence of satellites explained, 21.2 

vertical mixing 
of volatiles in crustal and upper mantle rocks, 26.5 

Vesta (see also asteroids) 
composition, 20.5 
mass, radius, density, table 20.5.1 
spin period, table 9.7.1 
surface features, 20.5 
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visual magnitude, table 9.7.1 
virial theorem 

and gravitational collapse, 11.2 
viscosity (see apparent attraction; collisions; Kepler motion, perturbed) 
visual magnitude 

of asteroids, table 9.7.1 
spectra among group of bodies, 7.2, table 7.2.1 

volatiles 
accretion in jet streams 

brief discussion, 16.7 
compared to accretion of solids, 6.6, 12.3, 18.11 

content in 
lunar surface rocks, 26.5 
meteorites, 26.2 

as dissipative medium in jet stream 
supportive evidence from meteorites, 18.11 

in hetegonic plasma, 16.3 
loss from Earth and Moon during accretion, 24.7 

evidence for accretional hot spot front, 24.7 
processes affecting 

frothing, 24.7 
convection, 24.7 
gas scavenging, 24.7 

release from impacting planetesimals, 26.2-26.3 
retention in atmosphere during Earth's accretion, 26.4 
and transfer of angular momentum from primary to secondary bodies,16.3 

volatiles, reactive 
in Earth's planetesimals, 26.2 

voltage, burning 
in magnetic fields 

and critical velocity phenomenon, 21.8 
voltage, limiting 

of burning voltage in magnetic fields 
and critical velocity phenomenon, 21.8 

water 
emission from comets, 14.6 
and hot spot front, 26.4 
released from impacting planetesimals to form terrestrial ocean and atmosphere, 
26.4, fig. 26.3.1 

xenon 
I129/Xe129 ratios in meteorites, 22.9 
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